114773 решу егэ

Часы со стрелками показывают 1 час 35 минут. Через сколько минут минутная стрелка в десятый раз поравняется с часовой?

Спрятать решение

Решение.

Пусть в первый раз стрелки встретятся через x часов. За это время часовая стрелка пройдет 1x делений, а минутная 12x делений. В начальный момент времени 1 час 35 минут минутная стрелка не доходит 5 часовых делений до отметки 12 часов ровно, а часовая стрелка находится на отметке  целая часть: 1, дробная часть: числитель: 35, знаменатель: 60 после отметки 12 часов ровно. Таким образом, расстояние между стрелками составляет 5 плюс целая часть: 1, дробная часть: числитель: 35, знаменатель: 60 = целая часть: 6, дробная часть: числитель: 7, знаменатель: 12 часового деления, откуда

12x минус 1x= целая часть: 6, дробная часть: числитель: 7, знаменатель: 12 равносильно x= дробь: числитель: 79, знаменатель: 12 умножить на 11 конец дроби часа.

После первой встречи стрелки должны встретиться еще 9 раз. При движении по кругу в одном направлении время между встречами определяется по формуле t= дробь: числитель: S, знаменатель: v _1 минус v _2 конец дроби , где S   — длина круга, в данном случае 12 делений, а  v _1 и  v _2  — скорости движущихся объектов: t= дробь: числитель: 12, знаменатель: 12 минус 1 конец дроби = дробь: числитель: 12, знаменатель: 11 конец дроби часа.

Тогда время до момента встречи часовой и минутной стрелок в десятый раз составит

9t плюс x=9 умножить на дробь: числитель: 12, знаменатель: 11 конец дроби плюс дробь: числитель: 79, знаменатель: 12 умножить на 11 конец дроби = дробь: числитель: 125, знаменатель: 12 конец дроби часа,

или  дробь: числитель: 125, знаменатель: 12 конец дроби умножить на 60=625 минут.

Сделаем проверку: в десятый раз стрелки встретятся в 12 часов ровно, с момента 1 час 35 минут до 12 часов ровно пройдет 10 часов 25 минут, то есть 625 минут.

Ответ: 625 минут.

Приведем другое решение.

Скорость движения минутной стрелки в 12 раз больше часовой: пока часовая обходит один полный круг, минутная проходит 12 кругов. Поэтому за то время, что минутная стрелка поворачивается на 35 минут, часовая стрелка поворачивается  дробь: числитель: 35, знаменатель: 12 конец дроби минуты или на  дробь: числитель: 35, знаменатель: 60 конец дроби = дробь: числитель: 7, знаменатель: конец дроби 12 часового деления. Из этого следует, что когда часы показывают 1 час 35 минут между минутной и часовой стрелками шесть полных делений (см. рис.) и еще  дробь: числитель: 7, знаменатель: конец дроби 12 деления, всего  дробь: числитель: 79, знаменатель: 12 конец дроби деления.

До десятой встречи стрелок минутная должна сначала пройти разделяющие их  дробь: числитель: 79, знаменатель: 12 конец дроби деления, затем 9 раз обойти полный круг, то есть пройти 108 часовых делений, и пройти последние L делений, на которые поворачивается часовая стрелка за время движения минутной. Приравняем время движения часовой и минутной стрелок до их десятой встречи:

 дробь: числитель: L, знаменатель: 1 конец дроби = дробь: числитель: дробь: числитель: 79, знаменатель: 12 конец дроби плюс 108 плюс L, знаменатель: 12 конец дроби равносильно 12L=L плюс дробь: числитель: 1375, знаменатель: 12 конец дроби равносильно 11L = 125 равносильно L = дробь: числитель: 125, знаменатель: 11 конец дроби часа,

что составляет  дробь: числитель: 125, знаменатель: 12 конец дроби умножить на 60=625 минут.

Приведем устное решение.

Ясно, что в первый раз стрелки встретятся между 2 и 3 часами, второй раз  — между 3 и 4 часами, …, десятый  — между 11 и 12 часами, то есть ровно в 12 часов. Таким образом, они встретятся ровно через 10 часов 25 минут, что составляет 625 минут.

18
Апр 2012

08 Задание (2022)ТЕКСТОВЫЕ ЗАДАЧИ

Задача про стрелки часов. Задание 11

1. Задание 11 (№ 99600)

Часы со стрелками показывают 8 часов 00 минут. Через сколько минут минутная стрелка в четвертый раз поравняется с часовой?

Эта задача ничуть не сложнее, чем задача на движение по кругу. У нас по кругу движутся часовая и минутная стрелки. Минутная стрелка за час проходит полный круг, то есть 360°. Значит, ее скорость равна 360° в час. Часовая стрелка за час проходит угол 30° ( это угол между двумя соседними числами на циферблате). Значит, ее скорость 30° в час.

В 8 часов 00 минут расстояние между стрелками составляет 240°:

Пусть  минутная стрелка в первый раз встретится с часовой через t часов. За это время минутная стрелка пройдет 360°t, а часовая 30°t, причем минутная пройдет на 240° больше, чем часовая.  Получим уравнение:

360°t-30°t=240°

t=240°/330°=8/11

То есть через 8/11 часа стрелки первый раз встретятся.

Теперь до следующей встречи минутная стрелка пройдет на 360° больше, чем часовая. Пусть это произойдет через х часов.

Получим уравнение:

360°х-30°х=360°. Отсюда х=12/11. И так еще два раза.

Получаем, что минутная стрелка в четвертый раз поравняется с часовой через 8/11+12/11+12/11+12/11= 4 часа= 240 мин.

Ответ: 240 мин.

2. Задание 11 (№ 114773). Часы со стрелками показывают 1 час 35 минут. Через сколько минут минутная стрелка в десятый раз поравняется с часовой?

В этой задаче скорость движения стрелок будем выражать в градусах/минуту.

Скорость минутной стрелки равна 360˚/60=6˚ в минуту.

Скорость часовой стрелки равна 30˚/60=0,5˚ в минуту.

В 0 часов положение часовой и минутной стрелок совпадало. 1 час 35 минут — это 95 минут. За это время минутная стрелка прошла 95х6=570˚=360˚+210˚, а часовая прошла 95×0,5˚=47,5˚. И у нас такая картинка:

Первый раз стрелки встретятся через время t_1, когда часовая стрелка повернется на  0,5{t_1}^{circ}, а минутная на 150˚+47,5˚ больше. Получаем уравнение для t_1:

150^{circ}+47,5^{circ}+0,5{t_1}=6t_1

Отсюда t_1={395^{circ}}/{11}

Следующий раз стрелки встретятся, когда минутная пройдет на круг больше часовой: 6t_2-0,5t_2=360^{circ}

t_2={360^{circ}}/{5,5}={720^{circ}}/{11}

И так 9 раз.

Минутная стрелка в десятый раз поравняется с часовой через t_1+9t_2={395^{circ}}/{11}+9{720^{circ}}/{11}={6875^{circ}}/{11}=625  минут

Ответ: 625

И.В. Фельдман, репетитор по математике.

Для вас другие записи этой рубрики:

  • Текстовая задача. ДВИ МГУ 2016
  • Видеолекция «Решение текстовых задач на движение по кругу и воде»
  • Задача про вклады. Задание В14 (2014) (Диагностическая работа 24 сентября)
  • Задача на проценты. Пакеты акций. Задание 19
  • Видеолекция «Решение текстовых задач на работу и прогрессии»
  • Видеолекция «Решение текстовых задач на движение по прямой»

Задача про стрелки часов. Задание 11

цвет

Значения преобразования цвета

Здесь вы можете получить информацию о шестнадцатеричном, RGB, HSL, HSV, CMYK, XYZ, Yxy, CMY, десятичном, десятичном RGB, двоичном, Hunter Lab, CIE Lab, преобразовании цветов CIE Luv значения. Кроме того, вы можете найти примеры выбранного цветового кода для оттенков и оттенков, дополнительных, монохромных, дополнительных разделений, триадных, тетрадных, аналоговых, CMYK и RGB Percentage и HTML CSS.

Оттенки (Темные цвета)

Оттенки (Светлые цвета)

Дополнительный цвет

Монохроматический Цвета

Дополнительный сплит Цвета

Триады Цвета

тетрадный Цвета

Аналог Цвета

CMYK Percentage

Процент RGB

Предварительный просмотр и примеры CSS

Значения CSS RGBA

на белом фоне

на черном фоне

Белый текст включен Фон

ColorCodesLab.com — HEX, RGB, HSV, Hunter Lab, CIE Lab, CIE Luv, XYZ, Yxy, десятичный, десятичный RGB, двоичный, CMY, CMYK.

Черный текст включен Фон

ColorCodesLab.com — HEX, RGB, HSV, Hunter Lab, CIE Lab, CIE Luv, XYZ, Yxy, десятичный, десятичный RGB, двоичный, CMY, CMYK.

Граница с белым фоном

Граница на черном BG

Box Shadow

Внутренняя тень от коробки

Цвет текста

ColorCodesLab.com — HEX, RGB, HSV, Hunter Lab, CIE Lab, CIE Luv, XYZ, Yxy, десятичный, десятичный RGB, двоичный, CMY, CMYK.

Тень текста

ColorCodesLab.com — HEX, RGB, HSV, Hunter Lab, CIE Lab, CIE Luv, XYZ, Yxy, десятичный, десятичный RGB, двоичный, CMY, CMYK.

1. Тип 1 № 27859 

Чему равен тупой вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

2. Тип 2 № 27125 

Радиусы трех шаров равны 6, 8 и 10. Найдите радиус шара, объем которого равен сумме их объемов.

3. Тип 3 № 1024 

На тарелке 16 пирожков: 7 с рыбой, 5 с вареньем и 4 с вишней. Юля наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

4. Тип 4 № 320174 

В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

5. Тип 5 № 26647 

Найдите корень уравнения 

6. Тип 6 № 26782 

Найдите значение выражения 

7. Тип 7 № 40130 

На рисунке изображен график производной функции  Найдите абсциссу точки, в которой касательная к графику  параллельна прямой  или совпадает с ней.

8. Тип 8 № 27994 

Ёмкость высоковольтного конденсатора в телевизоре  Ф. Параллельно с конденсатором подключeн резистор с сопротивлением  Ом. Во время работы телевизора напряжение на конденсаторе  кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое выражением  (с), где  − постоянная. Определите напряжение на конденсаторе, если после выключения телевизора прошло 21 с. Ответ дайте в киловольтах.

9. Тип 9 № 99599 

Из пункта A круговой трассы выехал велосипедист. Через 30 минут он еще не вернулся в пункт А и из пункта А следом за ним отправился мотоциклист. Через 10 минут после отправления он догнал велосипедиста в первый раз, а еще через 30 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км/ч.

10. Тип 10 № 508903 

На рисунке изображён график функции  Найдите значение x, при котором 

11. Тип 11 № 503145 

Найдите точку максимума функции 

12. Тип 12 № 507572 

а)  Решите уравнение 

б)  Найдите решения уравнения, принадлежащие отрезку 

13. Тип 13 № 520190 

Прямоугольник ABCD и цилиндр расположены таким образом, что AB  — диаметр верхнего основания цилиндра, а CD лежит в плоскости нижнего основания и касается его окружности, при этом плоскость прямоугольника наклонена к плоскости основания цилиндра под углом 60°.

а)  Докажите, что ABCD  — квадрат.

б)  Найдите длину той части отрезка BD, которая находится снаружи цилиндра, если радиус цилиндра равен 

14. Тип 14 № 505567 

Решите неравенство: 

15. Тип 15 № 508604 

При рытье колодца глубиной свыше 10 м за первый метр заплатили 1000 руб., а за каждый следующий на 500 руб. больше, чем за предыдущий. Сверх того за весь колодец дополнительно было уплачено 10 000 руб. Средняя стоимость 1 м оказалась равной 6250 руб. Определите глубину колодца.

16. Тип 16 № 513922 

Прямая, проходящая через вершину В прямоугольника ABCD, перпендикулярна диагонали АС и пересекает сторону АD в точке M, равноудаленной от вершин В и D

а)  Докажите, что BM и ВD делят угол В на три равных угла.

б)  Найдите расстояние от точки пересечения диагоналей прямоугольника ABCD до прямой СМ, если 

17. Тип 17 № 484634 

При каких значениях параметра a для любых значений параметра b хотя бы при одном значении параметра с система уравнений

имеет решения?

18. Тип 18 № 502079 

Каждое из чисел a1a2, …, a350 равно 1, 2, 3 или 4. Обозначим

S1  =  a1+a2+…+a350,

S2  =  a12+a22+…+a3502,

S3  =  a13+a23+…+a3503,

S4  =  a14+a24+…+a3504.

Известно, что S1 = 513.

а)  Найдите S4, если еще известно, что S2  =  1097, S3  =  3243.

б)  Может ли S4  =  4547 ?

в)  Пусть S4  =  4745. Найдите все значения, которые может принимать S2.

Просмотр содержимого документа

«2023 ЕГЭ Январь Математика Вариант 1»

Неотрицательное действительное

число 114773
.

23 — сумма всех цифр.
2 — количество делителей у числа 114773.

114773 и 0.000008712850583325347 — это обратные числа.

Это число представляется произведением простых чисел: 1 * 114773.

Другие представления числа 114773:
двоичный вид числа: 11100000001010101, троичный вид числа: 12211102212, восьмеричный вид числа: 340125, шестнадцатеричный вид числа: 1C055.
Число байт 114773 это 112 килобайтов 85 байтов .

Кодирование азбукой Морзе: .—- .—- ….- —… —… …—

Число не является числом Фибоначчи.

Косинус: -0.3665, тангенс: 2.5389, синус: -0.9304.
Натуральный логарифм: 11.6507.
Число 114773 имеет десятичный логарифм: 5.0598.
Корни числа: квадратный 338.7816, кубический 48.5974.
Число в квадрате это 1.3173e+10.

1 день 7 часов 52 минуты 53 секунды — столько в числе 114773 секунд.
В нумерологии число 114773 означает цифру 5.

Тренировочная работа №3 статград пробник ЕГЭ 2023 по математике 11 класс 12 тренировочных вариантов МА2210301-МА2210312 с ответами и решением базовый и профильный уровень (БАЗА И ПРОФИЛЬ). Официальная дата проведения работы: 28 февраля 2023 года.

Скачать ответы и решения для вариантов

Пробник ЕГЭ 2023 математика 11 класс статград база

Варианты профильного уровня ЕГЭ 2023 математика статград

ответы для олимпиады

Вариант МА2210301 и ответы

1. Каждый день во время конференции расходуется 60 пакетиков чая. Конференция длится 9 дней. В пачке чая 50 пакетиков. Какого наименьшего количества пачек чая хватит на все дни конференции?

2. Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

3. В таблице показано расписание пригородных электропоездов по направлению Москва Курская – Крутое – Петушки. Владислав пришёл на станцию Москва Курская в 18:20 и хочет уехать в Петушки на электропоезде без пересадок. Найдите номер ближайшего электропоезда, который ему подходит.

5. В коробке вперемешку лежат чайные пакетики с чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с чёрным чаем в 4 раза больше, чем пакетиков с зелёным. Найдите вероятность того, что случайно выбранный из этой коробки пакетик окажется пакетиком с чёрным чаем.

8. Некоторые учащиеся 10-х классов школы ходили в апреле на спектакль «Гроза». В мае некоторые десятиклассники пойдут на постановку по пьесе «Бесприданница», причём среди них не будет тех, кто ходил в апреле на спектакль «Гроза». Выберите утверждения, которые будут верны при указанных условиях независимо от того, кто из десятиклассников пойдёт на постановку по пьесе «Бесприданница».

  • 1) Каждый учащийся 10-х классов, который не ходил на спектакль «Гроза», пойдёт на постановку по пьесе «Бесприданница».
  • 2) Нет ни одного десятиклассника, который ходил на спектакль «Гроза» и пойдёт на постановку по пьесе «Бесприданница».
  • 3) Среди учащихся 10-х классов этой школы, которые не пойдут на постановку по пьесе «Бесприданница», есть хотя бы один, который ходил на спектакль «Гроза».
  • 4) Найдётся десятиклассник, который не ходил на спектакль «Гроза» и не пойдёт на постановку по пьесе «Бесприданница».

9. На фрагменте географической карты схематично изображены границы деревни Покровское и очертания озёр (площадь одной клетки равна одному гектару). Оцените приближённо площадь озера Малого. Ответ дайте в гектарах с округлением до целого значения.

10. Диагональ прямоугольного экрана ноутбука равна 40 см, а ширина экрана ― 32 см. Найдите высоту экрана. Ответ дайте в сантиметрах.

11. Пирамида Снофру имеет форму правильной четырёхугольной пирамиды, сторона основания которой равна 220 м, а высота — 104 м. Сторона основания точной музейной копии этой пирамиды равна 55 см. Найдите высоту музейной копии. Ответ дайте в сантиметрах.

12. В треугольнике ABC проведена биссектриса AL, угол ALC равен 112° , угол ABC равен 106° . Найдите угол ACB . Ответ дайте в градусах.

13. Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6, а второго — 6 и 4. Во сколько раз объём второго цилиндра больше объёма первого?

15. В школе мальчики составляют 55 % от числа всех учащихся. Сколько в этой школе мальчиков, если их на 50 человек больше, чем девочек?

19. Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из исходного числа вычли второе и получили 3366. В ответе укажите какое-нибудь одно такое исходное число.

20. Имеется два сплава. Первый содержит 45 % никеля, второй — 5 % никеля. Из этих двух сплавов получили третий сплав, содержащий 15 % никеля. Масса первого сплава равна 40 кг. На сколько килограммов масса первого сплава была меньше массы второго?

21. Прямоугольник разбит на четыре меньших прямоугольника двумя прямолинейными разрезами. Периметры трёх из них, начиная с левого верхнего и далее по часовой стрелке, равны 2, 3 и 18. Найдите периметр четвёртого прямоугольника.

Вариант МА2210305 и ответы

1. Для покраски 1 кв. м потолка требуется 230 г краски. Краска продаётся в банках по 2 кг. Какое наименьшее количество банок краски нужно для покраски потолка площадью 44 кв. м?

3. В таблице представлены налоговые ставки на автомобили в Москве с 1 января 2013 года. Какова налоговая ставка (в рублях за 1 л. с. в год) на автомобиль мощностью 115 л. с.?

5. Помещение освещается двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года обе лампы перегорят.

6. В таблице даны результаты олимпиад по русскому языку и биологии в 9 «А» классе. Похвальные грамоты дают тем школьникам, у кого суммарный балл по двум олимпиадам больше 110 или хотя бы по одному предмету набрано не меньше 60 баллов. Укажите номера учащихся 9 «А» класса, набравших меньше 60 баллов по русскому языку и получивших похвальные грамоты, без пробелов, запятых и других дополнительных символов.

7. На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D. В правом столбце указаны значения производной функции в точках A, B, C и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

8. Некоторые учащиеся 10-х классов школы ходили в ноябре на оперу «Евгений Онегин». В марте некоторые десятиклассники пойдут на оперу «Руслан и Людмила», причём среди них не будет тех, кто ходил в ноябре на оперу «Евгений Онегин». Выберите утверждения, которые будут верны при указанных условиях независимо от того, кто из десятиклассников пойдёт на оперу «Руслан и Людмила».

  • 1) Каждый учащийся 10-х классов, который не ходил на оперу «Евгений Онегин», пойдёт на оперу «Руслан и Людмила».
  • 2) Нет ни одного десятиклассника, который ходил на оперу «Евгений Онегин» и пойдёт на оперу «Руслан и Людмила».
  • 3) Найдётся десятиклассник, который не ходил на оперу «Евгений Онегин» и не пойдёт на оперу «Руслан и Людмила».
  • 4) Среди учащихся 10-х классов этой школы, которые не пойдут на оперу «Руслан и Людмила», есть хотя бы один, который ходил на оперу «Евгений Онегин».

9. План местности разбит на клетки. Каждая клетка обозначает квадрат 1м×1м . Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.

10. Пожарную лестницу длиной 10 м приставили к окну дома. Нижний конец лестницы отстоит от стены на 6 м. На какой высоте находится верхний конец лестницы? Ответ дайте в метрах.

11. Прямолинейный участок трубы длиной 4 м, имеющей в сечении окружность, необходимо покрасить снаружи (торцы трубы открыты, их красить не нужно). Найдите площадь поверхности, которую необходимо покрасить, если внешний обхват трубы равен 19 см. Ответ дайте в квадратных сантиметрах.

12. В треугольнике ABC стороны AC и BC равны. Внешний угол при вершине B равен 146° . Найдите угол C. Ответ дайте в градусах.

13. Даны два шара радиусами 4 и 2. Во сколько раз объём большего шара больше объёма меньшего?

15. Число больных гриппом в школе уменьшилось за месяц в пять раз. На сколько процентов уменьшилось число больных гриппом?

19. Найдите пятизначное число, кратное 15, любые две соседние цифры которого отличаются на 3. В ответе укажите какое-нибудь одно такое число.

20. Теплоход, скорость которого в неподвижной воде равна 19 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 5 часов, а в исходный пункт теплоход возвращается через 43 часа после отправления из него. Сколько километров проходит теплоход за весь рейс?

21. На кольцевой дороге расположены четыре бензоколонки: А, Б, В и Г. Расстояние между А и Б — 55 км, между А и В — 40 км, между В и Г — 40 км, между Г и А — 30 км (все расстояния измеряются вдоль кольцевой дороги по кратчайшей дуге). Найдите расстояние (в километрах) между Б и В.

Вариант МА2210309 и ответы

2. Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.

3. В группе 16 человек, среди них — Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.

4. Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

9. Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

13. Основанием правильной пирамиды PABCD является квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если AB = 30.

15. По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n , при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

16. В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M . Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22 .

18. У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький — 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять. а) Может ли Аня купить 24 конверта? б) Может ли Аня купить 29 конвертов? в) Какое наибольшее число конвертов может купить Аня?

Вариант МА2210311 и ответы

1. Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.

2. Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 78. Найдите площадь поверхности шара.

3. В магазине в среднем из 120 сумок 15 имеют скрытые дефекты. Найдите вероятность того, что выбранная в магазине сумка окажется со скрытыми дефектами.

4. Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.

9. Игорь и Паша, работая вместе, могут покрасить забор за 40 часов. Паша и Володя, работая вместе, могут покрасить этот же забор за 48 часов, а Володя и Игорь, работая вместе, — за 60 часов. За сколько часов мальчики покрасят забор, работая втроём?

13. Основанием правильной пирамиды PABCD является квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если AB = 24 .

15. По вкладу «А» банк в конце каждого года планирует увеличивать на 11 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n , при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

16. В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M . Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 18.

18. У Ани есть 400 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 22 рубля, а маленький — 17 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять. а) Может ли Аня купить 19 конвертов? б) Может ли Аня купить 23 конверта? в) Какое наибольшее число конвертов может купить Аня?

Работы статград по математике для 9 и 11 класса

Share the post «Математика 11 класс ЕГЭ 2023 статград база и профиль варианты и ответы с решением»

  • Twitter
  • VKontakte
  • WhatsApp

Метки: ЕГЭ 2023заданияматематика 11 классответыстатградтренировочная работа

Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.

❗Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.

❗Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.

Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.

В треугольнике ABC угол C равен 90°, CH – высота, BC = 5

Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 13.

Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2.

Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.

Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.

Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.

Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .

Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.

Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?

На рисунке изображён график y = f'(x) – производной функции f(x), определённой на интервале (−5; 5).

Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.

Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).

На рисунке изображён график функции f(x) = ax2 + bx + c.

Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.

Найдите абсциссу точки B.

Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.

Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]

Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.

Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.

Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.

Задание 17.
Найдите все значения a, при каждом из которых система уравнений 

begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}

не имеет решений.

Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?

Источник варианта: СтатГрад/statgrad.org.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 2

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • 130755 решу егэ
  • 130659 решу егэ математика
  • 1303 лицей вступительные экзамены
  • 130011 решу егэ математика
  • 13 ноября утром мы были у сталина он был в хорошем расположении духа егэ

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии