16 задание егэ информатика сумма

На уроке рассматривается решение 16 задания ЕГЭ по информатике про рекурсивные алгоритмы

Рекомендации по выполнению:

«Для успешного выполнения этого задания следует аккуратно произвести трассировку
предложенной рекурсивной функции»

Типичные ошибки и рекомендации по их предотвращению:

«Крайне важно отслеживать правильность возврата выполнения программы в нужную точку для
каждого рекурсивного вызова»

ФГБНУ «Федеральный институт педагогических измерений»

Для начала, разберем некоторые определения.

  • Процедура (функция)– это вспомогательный алгоритм (фрагмент кода программы), который служит для выполнения определенных действий.
  • Предназначена для:

  • выполнения одинаковых действий в различных местах одной и той же программы;
  • разбивки программы (или другой процедуры или функции) на подзадачи для улучшения читаемости кода;
  • Особенности программирования процедур (функций):

  • подпрограммы располагаются всегда выше основной программы:
  • процедура

  • сначала составляется заголовок процедуры или функции, в котором перечисляются формальные параметры, они обозначаются идентификаторами, как переменные (т.к. формальные параметры могут меняться, также как переменные):
  • var x,y:integer;
    { заголовок процедуры 
    с формальными переменными x и y:}
    procedure Sum(x,y:integer); 
    begin
     ...
    end;
    // основная программа
    begin
      ...
    end.
    var x,y:integer;
    { заголовок функции 
    с формальными переменными x и y:}
    function Sum(x,y:integer): integer; 
    begin
      ...
    end;
    // основная программа
    begin
     ...
    end.
  • в месте вызова процедуры в круглых скобках указываются фактические параметры (числовые значения либо арифметические выражения) в том же порядке:
  • вызов процедуры

  • функция вызывается немного иначе:
  • { заголовок процедуры 
    с формальными переменными x и y:}
    procedure Sum(x,y:integer); 
    begin
     ...
    end;
    // основная программа
    begin
      Sum(100,200)
    end.
    { заголовок функции 
    с формальными переменными x и y:}
    function Sum(x,y:integer): integer; 
    begin
      ...
    end;
    // основная программа
    begin
     write (Sum(100,200))
    end.
  • компилятор не будет выполнять процедуру (функцию) до момента ее вызова в основной программе;
  • пример работы процедуры и функции для сложения двух значений (порядок действий компилятора указан числами):
  • var x,y:integer;
    procedure Sum(x,y:integer); 
    begin
    //3. Выводим сумму двух запрошенных чисел
      write(x+y); 
    end;
    begin
    // 1. запрашиваем два числа
     readln(x,y);
    // 2. передаем запрошенные числа в процедуру 
     Sum(x,y)  
    end.
    var x,y:integer;
    function Sum(x,y:integer): integer; 
    begin
    {3. Суммируем два числа и присваиваем 
    значение функции:}
      Sum:=x+y;
    end;
    begin
    // 1. запрашиваем два числа
     readln(x,y);
    {2. передаем запрошенные числа 
    в функцию и выводим результат:} 
     write (Sum(x,y))
    end.

    Подробное описание работы с процедурами можно найти, перейдя по ссылке.

  • Рекурсивной называется процедура, вызывающая сама себя:
  • procedure row(n:integer);
    begin
         if n >=1 then begin
            write (n, ' ');
            row(n-1)
         end;
    end;
    begin
        row(10);
    end.

    Для использования рекурсии, необходимо задать:

    • условие остановки рекурсии (обычно, в виде условного оператора):
    • рекуррентную формулу (обычно, вызов самой себя с измененным параметром):

    Подробное описание работы с рекурсивными процедурами и функциями в Паскале можно найти здесь.

    Плейлист видеоразборов задания на YouTube:
    Задание демонстрационного варианта 2022 года ФИПИ


    Решение по рекуррентной формуле

    16_13:

    Алгоритм вычисления значений функций F(n) и G(n), где n – натуральное число, задан следующими соотношениями:

    F(1) = 1; G(1) = 1;
    F(n) = F(n–1) + 3·G(n–1), при n >=2 
    G(n) = F(n–1) - 2·G(n–1), при n >=2
    

    Чему равна сумма цифр значения F(18)?

    ✍ Решение:

    ✎ Решение с использованием программирования:

    PascalABC.NET:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    
    function F(n: integer): integer; forward;
    function G(n: integer): integer; forward;
     
    function F(n: integer): integer;
    begin
      if n = 1 then
        F := 1  // или result := 1
      else if n >= 2 then
        F := F(n - 1) + 3 * G(n - 1) 
        // или result := F(n - 1) + 3 * G(n - 1)
    end;
     
    function G(n: integer): integer;
    begin
      if n = 1 then
        G := 1  // или result := 1
      else if n >= 2 then
        G := F(n - 1) - 2 * G(n - 1)
        // или result := F(n - 1) - 2 * G(n - 1)
    end;
     
    begin
      var res := F(18);
      var s := 0;
      while res > 0 do
      begin
        s := s + (res mod 10);
        res := res div 10;
      end;
      print(s)
    end.

    Питон:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    
    def F( n ):
        if n == 1: 
            return 1
        elif (n >= 2):
            return F(n-1)+3*G(n-1)
    def G( n ):
        if n == 1: 
            return 1
        elif (n >= 2):
            return F(n-1)-2*G(n-1)
     
    res = F(18)
    s = 0
    while res > 0:
        s += res%10
        res = res // 10
    print(s)

    C++:

    Результат: 46


    16_1:

    Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

    F(1) = 1
    F(n) = F(n–1) * (n + 2), при n > 1
    

    ✍ Решение:

    ✎ Решение с использованием программирования:

    PascalABC.NET (решение №1):

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    
    function F(n: integer): integer;
    begin
      if n = 1 then
        F := 1
      else if n > 1 then
        F := F(n - 1) * (n + 2)
    end;
     
    begin
      print(F(5))
    end.

    PascalABC.NET (решение №2):

    1
    2
    3
    4
    5
    6
    7
    
    function F(n:integer):integer:=
     n=1 ? 1
     :  F(n-1) * (n+2);
     
    begin
      print(F(5))
    end.

    Питон:

    1
    2
    3
    4
    5
    6
    
    def F( n ):
        if n == 1: 
            return 1
        elif (n > 1):
            return F(n-1)*(n+2)
    print (F(5))

    C++:

    ✎ Решение теоретическое (методом с конца к началу):

    • Из условия задания мы имеем рекуррентную формулу: F(n–1) * (n + 2) и условие остановки рекурсии: n > 1.
    • Поскольку рекуррентная формула уже задана, то остается подставить в нее начальный параметр — число 5:
    • F(5) = F(4) * 7
      
    • Теперь применим эту формулу для всех вызываемых вложенных функций, вплоть до F(1) (при котором «сработает» остановка рекурсии). Получим:
    • F(5) = F(4) * 7
             F(4) = F(3) * 6
                    F(3) = F(2) * 5
                           F(2) = F(1) * 4
                                    1
      
    • На F(2) необходимо остановиться, так как действует условие остановки рекурсии: формула работает для n > 1. Также учтем, что по условию F(1) = 1.
    • Теперь с конца к началу перепишем все получившиеся сомножители и перемножим их:
    • 1 * 4 * 5 * 6 * 7 = 840

    Результат: 840


    16_2:

    Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

    F(0) = 1, F(1) = 1
    F(n) = 2 * F(n–1) + F(n-2), при n > 1
    

    Чему равно значение функции F(6)? В ответе запишите только целое число.

    ✍ Решение:

    ✎ Решение с использованием программирования:

    PascalABC.NET (решение №2):

    1
    2
    3
    4
    5
    6
    7
    8
    
    function F(n:integer):integer;
    begin
      if (n = 0) or (n = 1) then result:=1
      else if n>1 then result:=2*F(n-1) + F(n-2);
    end;
    begin
      print(F(6))
    end.

    ✎ Решение 1. Теоретическое (метод решения с начала к концу):

    • Из условия задания мы имеем рекуррентную формулу: 2 * F(n–1) + F(n-2) и условие остановки рекурсии: n > 1.
    • Из заданной рекуррентной формулы видим, что функция зависит от предыдущей функции (F(n–1)) и от пред-предыдущей функции (F(n-2)).
    • Так как первые два значения заданы (F(0) = 1, F(1) = 1), то можно построить таблицу последующих значений, двигаясь к числу 6:
    • n 0 1 2 3 4 5 6
      F(n)
      2*F(n – 1)+F(n — 2)
      1 1 2*1+1 =3 2*3+1 =7 2*7+3 =17 2*17+7 =41 2*41+17 =99
    • Таким образом, получаем, что при вызове функции F(6) результатом будет число 99

    ✎ Решение 2. Теоретическое (метод решения с конца к началу):

    • Поскольку рекуррентная формула уже задана, то остается подставить в нее начальный параметр — число 6:
    • F(6) = 2*F(5) + F(4)
      
    • Теперь применим эту формулу для всех вызываемых вложенных функций, вплоть до F(2) (F(1) и F(0) известны из условия задачи). Получим:
    • F(6) = 2*F(5) + F(4)
             F(5) = 2*F(4) + F(3)
                    F(4) = 2*F(3) + F(2)
                           F(3) = 2*F(2) + F(1)
                                    F(2) = 2*F(1) + F(0) = 2*1+1 = 3
                                              1       1
      
    • Теперь с конца к началу перепишем все получившиеся значения функций:
    • F(6) = 2*F(5) + F(4) = 2*41 + 17 = 99
             F(5) = 2*F(4) + F(3) + 2*17+7 = 41 
                    F(4) = 2*F(3) + F(2) = 2*7+3 = 17 
                           F(3) = 2*F(2) + F(1) = 2*3+1 = 7 
                                    F(2) = 2*F(1) + F(0) = 2*1+1 = 3   
                                              1       1
      

    Результат: 99

    Решение данного задания 16 также можно посмотреть в видеоуроке (теоретическое):

    📹 YouTube здесь


    16_10:

    Алгоритм вычисления значений функций F(n) и G(n), где n – натуральное число, задан следующими соотношениями:

    F(1) = 1; G(1) = 1;
    F(n) = F(n–1) – G(n–1), 
    G(n) = F(n–1) + 2*G(n–1), при n >= 2

    Чему равно значение величины F(5)/G(5)?
    В ответе запишите только целое число.

      
    Типовые задания для тренировки

    ✍ Решение:

    ✎ Решение с использованием программирования:

    PascalABC.NET:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    
    function F(n: integer): integer; forward;
    function G(n: integer): integer; forward;
     
    function F(n:integer):integer;
    begin
      if n = 1 then result:=1
      else if n>=2 then result:=F(n-1) - G(n-1);
    end;
     
    function G(n:integer):integer;
    begin
      if n = 1 then result:=1
      else if n>=2 then result:=F(n-1) + 2*G(n-1);
    end;
    begin
      print(F(5)/G(5))
    end.

    ✎ Решение теоретическое:

    • Решим задание с вызова функций F(5) и G(5). Будем получать формулы последовательно для F(5), F(4), …, F(1), G(5), G(4), …, G(1). Дойдя до известных значений F(1) = 1 и G(1) = 1, подставим их в полученные формулы:
    • F(5) = F(4) – G(4)
      G(5) = F(4) + 2*G(4)
      	F(4) = F(3) – G(3)  
      	G(4) = F(3) + 2*G(3) 
      		F(3) = F(2) – G(2) 
      		G(3) = F(2) + 2*G(2) 
      			F(2) = F(1) – G(1) 
      			G(2) = F(1) + 2*G(1) 
                                     F(1) = 1; G(1) = 1;
      
      F(2) = F(1) – G(1) = 1 - 1 = 0
      G(2) = F(1) + 2*G(1) = 1 + 2 = 3
      F(3) = F(2) – G(2) = 0 - 3 = -3
      G(3) = F(2) + 2*G(2) = 0 + 6 = 6
      F(4) = F(3) – G(3) = -3 - 6 = -9 
      G(4) = F(3) + 2*G(3) = -3 + 12 = 9
      F(5) = F(4) – G(4) = -9 - 9 = -18
      G(5) = F(4) + 2*G(4) = -9 + 18 = 9
      
    • Итого:
    • F(5)/G(5) = -18/9 = -2

    Ответ: -2


    Что вернет функция. Сколько символов «звездочка». Какова сумма чисел

    16_9:

    Что вернет функция F, если ее вызвать с аргументом 6?

    Паскаль:

    1
    2
    3
    4
    5
    6
    7
    
    function f(a:word):longword;
    begin
      if a>0 then
        f := f(a-1)*a;
      else
        f:=1;
    end;
    Бейсик:

    FUNCTION F(a)
      IF a > 0 THEN
         F = F(a - 1) * a
      ELSE
         F = 1;
      END IF
    END FUNCTION
    Python:

    def F(a):
        if a > 0:
            return F(a - 1) * a
        else:
            return 1
    С++:

    int F(int a);
    int F(int a) {
      if (a > 0)
        return F(a - 1) * a;
      else
        return 1;
    }

    ✍ Решение:

      ✎ Решение с использованием программирования:
      Подобные задания потеряли смысл после введения компьютерного ЕГЭ. Решение очевидно и просто:
      PascalABC.NET:

      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      
      function f(a:word):longword;
      begin
        if a>0 then
          f := f(a-1)*a
        else
          f:=1;
      end;
      begin
        print(f(6))
      end.

      ✎ Решение теоретическое:
      Рассмотрим алгоритм функции:

    • Если аргумент функции, т.е. a, равен единице, то функция возвращает в программу значение 1, иначе вызывается функция с аргументом a — 1 и результат этой функции умножается на a.
    • Это рекурсивный алгоритм вычисления факториала числа. Чтобы удостовериться в этом, выполним трассировку функции с аргументом = 6:
    • F(6):
      6 > 0, то F(5)*6
      F(5):
      5 > 0, то F(4)*5
      F(4):
      4 > 0, то F(3)*4
      F(3):
      3 > 0, то F(2)*3
      F(2):
      2 > 0, то F(1)*2
      F(1): 
      1 > 0, то F(0)*1
      F(0):
      0 > 0 - нет, то F(0) = 1
      
      Теперь подставляем значения, двигаясь вверх по прописанному алгоритму:
      F(1)= F(0)*1 = 1*1 = 1
      F(2)= F(1)*2 = 1*2 = 2
      F(3)= F(2)*3 = 2*3 = 6
      F(4)= F(3)*4 = 6*4 = 24
      F(5)= F(4)*5 = 24*5 = 120
      F(6)= F(5)*6 = 120*6 = 720
      
    • Т.е. 6! = 720

    Ответ: 720


    16_3:

    Ниже записаны две рекурсивные функции (процедуры): F и G.
    Сколько символов «звездочка» будет напечатано на экране при выполнении вызова F(18)?

    Паскаль:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    
    procedure F(n: integer); forward;
    procedure G(n: integer); forward;
     
    procedure F(n: integer);
    begin
      write('*');
      if n > 10 then F(n - 2) else G(n);
    end;
     
    procedure G(n: integer);
    begin
      write('**');
      if n > 0 then F(n - 3);
    end;
    Бейсик:

    DECLARE SUB F(n)
    DECLARE SUB G(n)
    SUB F(n)
      PRINT "*"
      IF n > 10 THEN
         F(n - 2)
      ELSE
         G(n)
      END IF
    END SUB
    SUB G(n)
      PRINT "**"
      IF n > 0 THEN
         F(n - 3)
      END IF
    END SUB
    Python:

    def F(n):
      print("*")
      if n > 10:
        F(n - 2)
      else:
        G(n)
    def G(n):
      print("**")
      if n > 0:
        F(n - 3)
    С++:

    void F(int n) {
      std::cout << "*";
      if (n > 10) {
        F(n - 2);
      }
      else {
        G(n);
      }
    }
    void G(int n) {
      std::cout << "**";
      if (n > 0)
        F(n - 3);
    }

      
    Типовые задания для тренировки

    ✍ Решение:

      ✎ Решение с использованием программирования:
      Подобные задания потеряли смысл после введения компьютерного ЕГЭ. Однако, при большом количестве звездочек имеет смысл ввести счетчик для хранения кол-ва звезд:
      PascalABC.NET:

      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      
      procedure F(n: integer); forward;
      procedure G(n: integer); forward;
      var k:=0; // объявление глобальной переменной-счетчика 
      procedure F(n: integer);
      begin
        write('*');
        k+=1; // увеличение счетчика
        if n > 10 then F(n - 2) else G(n);
      end;
       
      procedure G(n: integer);
      begin
        write('**');
        k+=2;// увеличение счетчика
        if n > 0 then F(n - 3);
      end;
      begin
       f(18);
       print(k) // вывод счетчика
      end.

      ✎ Решение теоретическое:

    • Для удобства восприятия задания, выпишем рекуррентные формулы и условия остановки рекурсии для двух процедур:
    • Для F:
      *
      F(n - 2) при n > 10
      G(n) при n <= 10
      
      Для G:
      **
      F(n - 3) при n > 0
      

      ✎ Способ 1:

    • Выпишем последовательность вызовов процедур, начиная с указанного в задании F(18):
    • F(18) -> F(16) -> F(14) -> F(12) -> F(10) -> G(10) -> 
      F(7) -> G(7) -> F(4) -> G(4) -> F(1) -> G(1) -> F(-2) -> G(-2)
      
    • Обратим внимание, что независимо от условия процедура F выводит на экран одну *, а процедура G выводит две *. Посчитаем для последовательности вызовов итоговую сумму звездочек: 9F + 5G = 9*1 + 5*2 = 19
    • Результат: 19

      ✎ Способ 2:

    • Рассмотрим пошагово выполнение программы при вызове F(18):
    • 1 шаг: F(18)
             *    F(16)
      2 шаг:      *    F(14)
      3 шаг:           *    F(12)
      4 шаг:                *    F(10)
      5 шаг:                     *    G(10)
      6 шаг:                          **   F(7)
      7 шаг:                                *  G(7)
      8 шаг:                                   **  F(4)
      9 шаг:                                       *    G(4)
      10 шаг:                                           **   F(1)
      11 шаг:                                                *   G(1)
      12 шаг:                                                    **   F(-2)
      13 шаг:                                                         *   G(-2)
      14 шаг:                                                             **
      
    • Посчитаем количество звездочек: 19

    Результат: 19

    Пошаговое аналитическое решение данного 16 задания ЕГЭ по информатике доступно в видеоуроке:

    📹 YouTube здесь

    Видеорешение на RuTube здесь


    16_12:

    Сколько символов «звездочка» будет напечатано на экране при выполнении вызова F(5)?

    Паскаль:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    
    procedure F(n: integer);
    begin
     writeln('*');
     if n > 0 then begin
       F(n-2);
       F(n div 2);
       F(n div 2);
     end
    end;
    Бейсик:

    DECLARE SUB F(n)
    SUB F(n)
      PRINT '*'
      IF n > 0 THEN
         F(n - 2)
         F(n  2)
         F(n  2)
      END IF
    END SUB
    Python:

    def F(n):
      print('*')
      if n > 0:    
        F(n-2)
        F(n // 2)
        F(n // 2)
    С++:

    void F(int n) {
      std::cout <<*;
      if (n > 0) {
        F(n - 2);
        F(n / 2);
        F(n / 2);
      }
    }

    ✍ Решение:

    • В начале каждого вызова независимо от условия на экран выводится «звездочка». Кроме того, если условие n > 0 истинно, то функция вызывается еще три раза с разными аргументами. Таким образом, каждая функция выводит на экран либо одну звездочку (если условие ложно), либо 4 звездочки если условие истинно.
    • Схематично рассмотрим вызов каждой функции, начиная с функции F(5). Дойдя до F(0), для которой условие будет ложно, будем подставлять полученное количество «звездочек», двигаясь опять к F(5):
    • F(5) = одна '*', F(3), F(2), F(2)
      F(3) = одна '*', F(1), F(1), F(1)
      F(2) = одна '*', F(0), F(1), F(1)
      F(1) = одна '*', F(-1), F(0), F(0)
      F(0) = одна '*' = 1  (условие ложно)
      F(-1) = одна '*' = 1 (условие ложно)
      ---
      Движение обратно:
      F(1) = одна '*', F(-1), F(0), F(0) = 1 + 1 + 1 + 1 = 4 '*'
      F(2) = одна '*', F(0), F(1), F(1) = 1 + 1 + 4 + 4 = 10 '*'
      F(3) = одна '*', F(1), F(1), F(1) = 1 + 4 + 4 + 4 = 13 '*'
      F(5) = одна '*', F(3), F(2), F(2) = 1 + 13 + 10 + 10 = 34 '*' 
      

    Ответ: 34


    16_4:

    Ниже записаны две рекурсивные функции (процедуры): F и G.
    Какова сумма чисел, напечатанных на экране при выполнении вызова F(17)?

    Паскаль:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    
    procedure F(n: integer); forward;
    procedure G(n: integer); forward;
     
    procedure F(n: integer);
    begin
      writeln(n);
      if n mod 2  =0 then F(n div 2) 
      else G((n - 1) div 2);
    end;
     
    procedure G(n: integer);
    begin
      writeln (n); 
      if n > 0 then F(n);
    end;
    Бейсик:

    DECLARE SUB F(n)
    DECLARE SUB G(n)
    SUB F(n)
      PRINT n
      IF n MOD 2 = 0 THEN
         F(n  2)
      ELSE
         G ( (n - 1)  2)
      END IF
    END SUB
    SUB G(n)
      PRINT n
      IF n > 0 THEN
         F(n)
      END IF
    END SUB
    Python:

    def F(n):
      print(n)
      if n % 2 == 0:
        F(n // 2)
      else:
        G((n - 1) // 2)
    def G(n):
      print(n)
      if n > 0:
        F(n)
    С++:

    void F(int n) {
      std::cout << n << endl;
      if (n % 2 == 0) {
        F(n / 2);
      }
      else {
        G((n - 1) / 2) ;
      }
    }
    void G(int n) {
      std::cout << n << endl;
      if (n > 0)
        F(n);
    }

      
    Типовые задания для тренировки

    ✍ Решение:

      ✎ Решение с использованием программирования:
      Подобные задания потеряли смысл после введения компьютерного ЕГЭ. Однако, при большом количестве чисел имеет смысл ввести сумматор для вычисления суммы данных чисел:
      PascalABC.NET:

      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      
      procedure F(n: integer); forward;
      procedure G(n: integer); forward;
      var sum:=0; // сумматор
      procedure F(n: integer);
      begin
        writeln(n);
        sum+=n; // добавляем число в сумматор
        if n mod 2  =0 then F(n div 2) 
        else G((n - 1) div 2);
      end;
       
      procedure G(n: integer);
      begin
        writeln (n); 
        sum+=n; // добавляем число в сумматор
        if n > 0 then F(n);
      end;
      begin
        F(17);
        print('sum =',sum)
      end.

      ✎ Решение теоретическое:

    • Для удобства восприятия задания, выпишем рекуррентные формулы и условия остановки рекурсии для двух процедур:
    • Для F:
      n
      F(n div 2) при n - четное (n mod 2 = 0)
      G((n - 1) div 2) при n - нечетное
      
      Для G:
      n
      F(n) при n > 0
      
    • Выпишем последовательность вызовов процедур, начиная с указанного в задании F(17).
    • Обратим внимание, что независимо от условия как процедура F выводит на экран n, так и процедура G выводит n.
    • F(17) -> n - нечетное, G(8) вывод 17
      G(8) -> F(8)                вывод 8
      F(8) -> n - четное, F(4)    вывод 8
      F(4) -> n - четное, F(2)    вывод 4 
      F(2) -> n - четное, F(1)    вывод 2
      F(1) -> n - нечетное, G(0)  вывод 1
      G(0)                        вывод 0
      
    • Сумма:
    • 17 + 8 + 8 + 4 + 2 + 1 + 0 = 40

    Результат: 40


    16_5:

    Ниже записаны две рекурсивные функции (процедуры): F и G.
    Чему будет равно значение, вычисленное при выполнении вызова F(6)?

    Паскаль:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    
    function F(n: integer):integer; forward;
    function G(n: integer):integer; forward;
    function F(n:integer):integer;
    begin
     if (n > 2) then
       F:= F(n - 1) + G(n - 2)
     else F:= n;
    end;
    function G(n:integer):integer;
    begin
     if (n > 2)then
       G:= G(n - 1) + F(n -2)
     else G:= n+1;
    end;
    Бейсик:

    FUNCTION F(n)
      IF n > 2 THEN
         F = F(n - 1) + G(n - 2)
      ELSE
         F = n;
      END IF
    END FUNCTION 
    FUNCTION G(n)
      IF n > 2 THEN
         G = G(n - 1) + F(n -2)
      ELSE
         G = n+1;
      END IF
    END FUNCTION
    Python:

    def F(n):
        if n > 2:
            return F(n - 1) + G(n - 2)
        else:
            return n
    def G(n):
        if n > 2:
            return G(n - 1) + F(n - 2)
        else:
            return n+1
    С++:

    int F(int n);
    int G(int n);
    int F(int n) {
      if (n > 2)
        return F(n - 1) + G(n - 2);
      else
        return n;
    }
    int G(int n) {
      if (n > 2)
        return G(n - 1) + F(n - 2);
      else
        return n + 1;
    }

      
    Типовые задания для тренировки

    ✍ Решение:

    Результат: 17

    Предлагаем посмотреть видеоразбор данного аналитического решения:

    📹 YouTube здесь

    Видеорешение на RuTube здесь



    С каким аргументом?

    16_8:

    Вызов представленной ниже рекурсивной функции приводит к появлению на экране чисел и точек. С каким минимальным натуральным аргументом а нужно вызвать эту функцию, чтобы в результате на экране появилось 5 точек (не обязательно подряд, между точками могут встречаться числа)?

    Паскаль:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    
    function gz(a:integer):integer;
    var p:integer;
    begin
      if a<1 then begin 
       gz:=1; exit; 
      end;
      if a mod 3=0 then begin
       write('...');
       p:=gz(a div 3)+gz(a div 4);
      end
      else begin
        write('.');
        p:=gz(a div 4);
      end;
      write(p);
      gz:=2; 
    end;

    ✍ Решение:

      ✎ Решение с использованием программирования:
      Подобные задания потеряли смысл после введения компьютерного ЕГЭ. Однако, при большом количестве чисел имеет смысл ввести сумматор для вычисления суммы данных чисел:
      PascalABC.NET:

      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      
      procedure F(n: integer); forward;
      procedure G(n: integer); forward;
      var sum:=0; // сумматор
      procedure F(n: integer);
      begin
        writeln(n);
        sum+=n; // добавляем число в сумматор
        if n mod 2  =0 then F(n div 2) 
        else G((n - 1) div 2);
      end;
       
      procedure G(n: integer);
      begin
        writeln (n); 
        sum+=n; // добавляем число в сумматор
        if n > 0 then F(n);
      end;
      begin
        F(17);
        print('sum =',sum)
      end.

    Результат: 6

    Смотрите подробное аналитическое решение:

    📹 YouTube здесь

    📹 Видеорешение на RuTube здесь (аналитическое)


    Не актуально для компьютерного ЕГЭ

    Все числа, которые будут напечатаны на экране, в том же порядке

    16_6: Демоверсия ЕГЭ 2018 информатика:

    Ниже на пяти языках программирования записан рекурсивный алгоритм F.
    Паскаль:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    
    procedure F(n: integer);
    begin
    if n > 0 then
    begin
      write(n);
      F(n - 3);
      F(n div 3)
    end
    end;
    Бейсик:

    SUB F(n)
      IF n > 0 THEN
         PRINT n
         F(n - 3)
         F(n  3)
      END IF
    END SUB
    Python:

    def F(n):
      if n > 0:
         print(n)
         F(n - 3)
         F(n // 3)
    С++:

    void F(int n){
      if (n > 0){
        std::cout <<n;
        F(n - 3);
        F(n / 3);
      }
    }

    Запишите подряд без пробелов и разделителей все числа, которые будут напечатаны на экране при выполнении вызова F(9). Числа должны быть записаны в том же порядке, в котором они выводятся на экран.

    Похожие задания для тренировки

    ✍ Решение:

      Рассмотрим алгоритм:

    • В данном фрагменте программы рекурсивная процедура вызывает саму себя дважды.
    • Благодаря условию, находящемуся в процедуре (if n > 0 — условие остановки рекурсии), обеспечивается выход из рекурсии и не происходит «зацикливания».
    • Выполнение процедур закончится, когда в каждой из вызванных процедур выполнятся по две внутренние процедуры, и условие if n > 0 перестанет работать (т.е. когда параметр процедуры n станет <= 0).
    • div — целочисленное деление, т.е., например:
    • 5 div 2 = 2
      1 div 2 = 0
      
    • Отобразим пошагово выполнение каждой процедуры, двигаясь сверху вниз и оставляя отступы слева с каждым новым шагом. В каждой строке будем отображать порядковый номер шага. Под вызовом каждой процедуры разместим именно те действия, которые происходят в данной процедуре:
    •    F(9)
      1: 9  F(6)    (9 - 3 = 6)
      2:     6   F(3)    (6 - 3 = 3)
      3:          3    F(0)    (3 - 3 = 0, условие не работает)
      4:         F(1)  (3 div 3 = 1)
      5:          1    F(-2)    (1 - 3 = -2, условие не работает)
      6:         F(0)    (1 div 3 = 0, условие не работает)
      7:    F(2) (6 div 3 = 2)
      8:     2   F(-1)    (2 - 3 = -1, условие не работает)
      9:    F(0)    (2 div 3 = 0, условие не работает)
      10:F(3)  (9 div 3 = 3)
      11:3  F(0)     (3 - 3 = 0, условие не работает) 
      12:F(1)  (3 div 3 = 1)   
      13: 1   F(-2)     (1 - 3 = -2, условие не работает) 
      
    • Выделены те числа, которые выводятся на экран. Подчеркнуты те процедуры, в которых условие не работает, соответственно, ничего на экран не выводится.
    • Перепишем по порядку все выводимые на экран числа сверху вниз: 9631231

    Результат: 9631231

    Подробное решение 16 (11) задания демоверсии ЕГЭ 2018 года смотрите на видео:
    📹 Видео 1 способ
    📹 Видеорешение на RuTube здесь

    2 способ:
    📹 YouTube здесь
    📹 Видеорешение на RuTube здесь


    16_7:

    Ниже записан рекурсивный алгоритм F. Запишите подряд без пробелов и разделителей все числа, которые будут напечатаны на экране при выполнении вызова F(130).
    Числа должны быть записаны в том же порядке, в котором они выводятся на экран.

    Паскаль:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    
    procedure F(n: integer);
    begin
      if n > 1 then
      begin
        write(n);
        F(n div 10);
        F(n - 40)
       end
    end;
    Бейсик:

    SUB F(n)
      IF n > 1 THEN
         PRINT n
         F(n  10)
         F(n - 40)
      END IF
    END SUB
    Python:

    def F(n):
      if n > 1:
         print(n)
         F(n // 10)
         F(n - 40)
    С++:

    void F(int n){
      if (n > 1){
        std::cout <<n;
        F(n / 10);
        F(n - 40);
      }
    }

    ✍ Решение:

      Разберем алгоритм программы:

    • В данном фрагменте программы рекурсивная процедура F вызывает саму себя дважды.
    • В процедуре находится условие if n > 1 — условие остановки рекурсии, благодаря которому обеспечивается выход из рекурсии и не происходит «зацикливания».
    • Выполнение фрагмента программы закончится, когда в каждой из вызванных процедур выполнятся по две внутренние процедуры, и условие if n > 1 перестанет работать (т.е. когда параметр процедуры n станет <= 1).
    • div — целочисленное деление, т.е., например:
    • 5 div 3 = 1
      1 div 3 = 0
      
    • Выполним трассировку кода процедуры: двигаться будем пошагово сверху вниз, оставляя отступы слева с каждым новым шагом. В каждой строке будем отображать порядковый номер шага. Под вызовом каждой процедуры разместим именно те действия, которые происходят в данной процедуре:
    •    F(130) 130  
      1: ➥  F(13) (130 div 10 = 13) 13
      2:           ➥ F(1) условие не работает! 1 ≤ 0
      3:           ➥ F(-27) условие не работает! -27 ≤ 0
      4: ➥  F(90) (130 - 40 = 90) 90        
      5:           ➥ F(9) (90 div 10 = 9) 9
      6:                    ➥ F(0) условие не работает! 0 ≤ 0
      7:                    ➥ F(-31) условие не работает! -31 ≤ 0
      8:           ➥  F(50) (90 - 40 = 50) 50
      9:                     ➥  F(5) (50 div 10 = 5) 5
      10:                              ➥ F(0) условие не работает! 0 ≤ 0
      11:                              ➥ F(-35) условие не работает! -35 ≤ 0
      12:                    ➥  F(10) (50 - 40 = 10) 10
      13:                              ➥ F(1) условие не работает! 1 ≤ 0
      14:                              ➥ F(-30) условие не работает! -30 ≤ 0
      
    • Выделены красным цветом те числа, которые выводятся на экран. Подчеркнуты те процедуры, в которых условие не работает, соответственно, ничего на экран не выводится.
    • Перепишем сверху вниз все выводимые на экран числа: 1301390950510

    Результат: 1301390950510

    Предлагаем посмотреть видео разбора задания:
    📹 YouTube здесь

    📹 Видеорешение на RuTube здесь


    16_11:

    Определите, что выведет на экран программа при вызове F(5).

    Паскаль:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    
    procedure F(n: integer); forward;
    procedure G(n: integer); forward;
    procedure F(n: integer);
    begin
      if n > 2 then
       begin
        write(n);
        F(n - 1);
        G(n - 2);
       end
      else
        write(n+2);
    end;
    procedure G(n: integer);
    begin
      write(n);
      if n > 2 then
       begin
        G(n - 1);
        F(n - 2);
       end;
    end;
    Бейсик:

    DECLARE SUB F(n)
    DECLARE SUB G(n)
    SUB F(n)
      IF n > 2 THEN
         PRINT n
         F(n - 1)
         G(n - 2)
      ELSE
         PRINT n+2
      END IF
    END SUB
    SUB G(n)
      PRINT n
      IF n > 2 THEN
         G(n - 1)
         F(n - 2)
      END IF
    END SUB
    Python:

    def F(n):
        if n > 2:
            print(n, end='')
            F(n - 1)
            G(n - 2)
        else:
            print(n+2, end='')
     
    def G(n):
        print(n, end='')
        if n > 2:
            G(n - 1)
            F(n - 2)
    С++:

    void G(int n);
    void F(int n) {
    	if (n > 2) {
    	  std::cout << n;
    	  F(n - 1);
    	  G(n - 2);		
    	  }
    	else
    	  std::cout << n+2;
    }
    void G(int n) {
    	std::cout << n;
    	if (n > 2) {
    	  G(n - 1);
    	  F(n - 2);
    	  } 
    }

      
    Типовые задания для тренировки

    ✍ Решение:

    • При истинности условия функция F также, как и функция G «запускает» еще две функции: функция F: 1)F(n — 1) и 2)G(n — 2), а функция G: 1)G(n — 1) и 2)F(n — 2).
    • Рассмотрим последовательно алгоритм работы функций, нумеруя вызовы функций. Для удобства будем делать отступы для каждой функции. Таким образом, для вызова каждой функции должно быть два внутренних вызова:
    • F(5) = 5 (на экране)
      1) F(n - 1), т.е. F(4)
          F(4) = 4(на экране)
          1) F(n - 1), т.е. F(3)
                 F(3) = 3(на экране)
                 1) F(n - 1), т.е. F(2)
                        F(2) = n + 2 = 4 (на экране) (блок else)
                 2) G(n - 2), т.е. G(1)
         	          G(1) = 1 (на экране)
          2) G(n - 2), т.е. G(2)
      	   G(2) = 2 (на экране)
      2) G(n - 2), т.е. G(3)
          G(3) = 3 (на экране)
          1)G(n - 1), т.е. G(2)
                 G(2) = 2 (на экране)
          2) F(n - 2), т.е. F(1)
                 F(1) = n + 2 = 3 (на экране) (блок else)
      
    • Перепишем сверху вниз все цифры, выведенные на экран:
    • 543412323

    Ответ: 543412323

    Шестнадцатое задание из ЕГЭ по информатике 2022 даётся на рекурсию.

    Это задание нужно делать с помощью компьютера.

    В программировании рекурсией называется процесс, когда функция вызывает сама себя или, когда две функции попарно вызывают друг друга.

    Мы будем писать все программы на языке программирования Python.

    Что такое Функция в языке программирования Python ?

    Функция – это подпрограмма, результатом работы которой может является определенное значение.

    Рассмотрим пример функции, которая суммирует два числа!

    def F(x, y):
        s = x + y
        return s
    
    a = int(input())
    b = int(input())
    
    r = F(a, b)
    
    print(r)
    

    Здесь функция F, которая суммирует два числа.

    В главной части программы запрашиваются два числа с клавиатуры: a и b! Эти два числа передаются в функцию F. В функции эти числа кладутся в локальные переменные x и y. Сумма переменных x и y записывается в переменную s. Переменная s возвращается, как результат работы функции F.

    Результат работы функции будет помещён в переменную r (в строке r = F(a, b)) в основной части программы.

    Таким образом, в переменной r будет сумма двух переменных a и b.

    Функции позволяют сократить программный код для однотипных расчётов.

    Тренировочные задачи 16 задания из ЕГЭ по информатике 2023

    Задача (Стандартная)

    Алгоритм вычисления значения функции F(n), где n – натуральное число,
    задан следующими соотношениями:

    F(n) = 1 при n = 1;
    F(n) = n + F(n − 1), если n – чётно,
    F(n) = 3 × F(n − 2), если n > 1 и при этом n – нечётно.

    Чему равно значение функции F(25)?

    Решение:

    Напишем программу для решения данной задачи. В начале опишем все правила, которые даны в условии задачи для функции. В основной части программы запустим эту функцию.

    # Сама функция
    def F(n):
        if n==1: return 1
        if n%2==0: return n+F(n-1)
        if n>1 and n%2!=0: return 3*F(n-2)
        
    # Основная часть программы
    print(F(25))
    

    После запуска рекурсивной функции программа выведет ответ 531441.

    Выражение n%2 != 0 (остаток от деления на «2» не равен нулю) обозначает нечётное число. Выражение n%2==0 обозначает чётное число.

    Ответ: 531441

    Продолжаем тренировку по подготовке к 16 заданию ЕГЭ по информатике 2022.

    Задача (Продолжаем подготовку)

    Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

    F(1) = 1
    F(2) = 3
    F(n) = F(n–1) * n + F(n–2) * (n – 1) , при n > 2

    Чему равно значение функции F(8)? В ответе запишите только натуральное число.

    Решение:

    # Сама функция
    def F(n):
        if n==1: return 1
        if n==2: return 3
        if n>2: return F(n-1)*n + F(n-2)*(n-1)
        
    # Основная часть программы
    print(F(8))
    

    Ответ получается 148329.

    Ответ: 148329

    Закрепляющий пример на рекурсию 16 задания из ЕГЭ по информатике 2022.

    Задача(Две функции)

    Алгоритм вычисления значения функций F(n) и G(n), где n — натуральное число, задан следующими соотношениями:


    F(n) = 0, если n <= 2,
    F(n) = G(n — 2), если n > 2


    G(n) = 0, n <= 1,
    G(n) = F(n — 1) + n, если n > 1

    Чему равно значение функции F(8)? В ответе запишите только натуральное число.

    Решение:

    # Сами функции
    def F(n):
        if n<=2: return 0
        if n>2: return G(n-2)
    
    def G(n):
        if n<=1: return 0
        if n>1: return F(n-1)+n
    
    # Основная часть программы
    print(F(8))
    

    Получается ответ 9.

    Ответ: 9

    Задача (Количество значений)

    Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

    F(n) = 2*n*n*n + 1, при n > 25
    F(n) = F(n+2) + 2*F(n+3), при n ≤ 25

    Определите количество натуральных значений n из отрезка [1; 1000], для которых значение F(n) кратно 11.

    Решение:

    # Сама функция
    def F(n):
        if n>25: return 2*n*n*n + 1
        if n<=25: return F(n+2) + 2*F(n+3)
    
    k=0
    
    # Перебираем диапазон
    for i in range(1, 1001):
        if F(i)%11==0:
            k=k+1
    
    print(k)
    

    В начале формируем функцию F. Затем перебираем числа из диапазона от 1 до 1000. Каждое число подставляем в функцию F. Если значение функции F делится на 11, то мы зачитываем такое значение i.

    В ответе получается 91.

    Ответ: 91

    Задача (Используем глобальную переменную)
    ЕГЭ по информатике - задание 16 (Глобальная переменная)

    Решение:

    При решении этой задачи можно применить глобальную переменную.

    def F(n):
        global s
        s=s+1
        if n>=1:
            s=s+1
            F(n-1)
            F(n-2)
            s=s+1
    
    s=0
    F(35)
    print(s)
    

    Здесь внутри функции заводим глобальную переменную s, которая будет подсчитывать количество напечатанных звёздочек. Теперь эту переменную видно при любом вызове функции, и при каждом вызове функции она будет одна и та же переменная. Вместо печати звёздочек пишем конструкцию s=s+1.

    В основной части программы перед первым запуском функции переменной s присваиваем 0.

    Программа может немного медленно работать из-за большой глубины рекурсии, но через минуту выведет число 96631265.

    Ответ: 96631265

    Новые тенденции

    В последнее время мы видим тенденцию в 16 задании из ЕГЭ по информатике 2023, что теперь мало переписать функцию и её запустить. Необходимо подумать, как можно преобразовать то рекурсивное выражение, которое нужно вычислить.

    Задача (Новое веяние)

    (К. Багдасарян) Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

    F(n) = 2, если n = 1,
    F(n) = 2 · F(n – 1), если n > 1.

    Чему равно значение выражения F(1900)/21890 ?

    Решение:

    1 Способ (Аналитическое решение)

    Если мы просто перепишем функцию и попытаемся вычислить выражение F(1900)/21890, то получим ошибку RecursionError: maximum recursion depth exceeded. Возникает она из-за слишком большой цепочки вызовов функции.

    В подобных задачах нужно попытаться самому упростить выражение, которое пытаемся вычислить. Посмотрим, что из себя представляет функция.

    F(1900) = 2*F(1899) = 2*2*F(1898) = … 21900

    Тогда

    F(1900)/21890 = 21900/21890 = 210 = 1024

    Получается 1024.

    2 Способ (Через lru_cache)

    Чтобы уменьшить цепочку вызовов функции, можно использовать инструмент lru_cache.

    from functools import lru_cache
    
    @lru_cache(None)
    def F(n):
        if n==1: return 2
        if n>1: return 2*F(n-1)
    
    for i in range(2, 1900):
        F(i)
    
    print(F(1900)/2**1890)
    

    В задаче функция опирается на значение функции от n-1 и т.д. За счёт этого происходят длинные вычисления для каждого числа n.

    Использовав инструмент lru_cache, мы пробегаемся в цикле по значениям n в возрастающем порядке, и для каждого значения сохраняем результаты функции. Таким образом, вычисляя очередное значение, программа опирается на уже готовый результат, тем самым цепочка вызовов функции будет маленькой.

    Ответ: 1024

    Задача(Новое веяние, закрепление)

    Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:

    F(n) = 1 при n ≤ 2;
    F(n) = n * F(n-2), если n > 2.

    Чему равно значение выражение F(3000)/F(2996) ?

    Решение:

    1 Способ (Аналитическое решение)

    Начнём расписывать F(3000).

    F(3000) = 3000*F(2998) = 3000*2998*F(2996)

    Получается:

    F(3000)/F(2996) = 3000*2998*F(2996)/F(2996) = 3000*2998 = 8994000

    2 Способ (Через lru_cache)

    from functools import lru_cache
    
    @lru_cache(None)
    def F(n):
        if n<=2: return 1
        if n>2: return n*F(n-2)
    
    for i in range(2, 3000):
        F(i)
    
    print(F(3000)/F(2996))
    

    Ответ: 8994000

    Задача (Вперёд к победе!)

    Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:

    F(n) = 1 при n=1;
    F(n) = 2 при n=2;
    F(n) = n*(n-1) + F(n-1) + F(n-2), если n > 2.

    Чему равно значение функции F(2023) — F(2021) — 2*F(2020) — F(2019)?

    Решение:

    1 Способ (Аналитическое решение)

    F(2023) = 2023*2022 + F(2022) + F(2021) =
    = 2023*2022 + 2022*2021 + F(2021) + F(2020) + F(2021) =
    =2023*2022 + 2022*2021 + 2021*2020 + F(2020) + F(2019) + F(2020) + F(2021) =
    2023*2022 + 2022*2021 + 2021*2020 + 2*F(2020) + F(2019) + F(2021) =
    2023*2022 + 2022*2021 + 2021*2020 + F(2021) + 2*F(2020) + F(2019)

    Если подставим полученный результат в выражение, которое нужно найти, то получим:

    2023*2022 + 2022*2021 + 2021*2020 = 12259388

    2 Способ (Через lru_cache)

    from functools import lru_cache
    
    @lru_cache(None)
    def F(n):
        if n==1: return 1
        if n==2: return 2
        if n>2: return n*(n-1) + F(n-1) + F(n-2)
    
    for i in range(2, 2023):
        F(i)
    
    print(F(2023) - F(2021) -2*F(2020) - F(2019))
    

    Ответ: 12259388

    Удачи при решении 16 задания из ЕГЭ по информатике 2022.

    А если промежуток намного больше будет? например не [1, 1000], а [1,500 000 000]? пк зависнет просто.. можно кроме как разбивать промежуток много на разных программ решить такую задачу?

    Ниже на пяти языках программирования записан рекурсивный алгоритм F.
    def F(n):
      print(n)
      if n > 0:
      F(n — 1)
      F(n — 3)
    Чему равна сумма всех чисел, напечатанных на экране при выполнении вызова F(5)?
    А можете показать как это через python решать ?

    ЕГЭ информатика 16 задание разбор, теория, как решать.

    Рекурсивные алгоритмы, (П) — 1 балл

    Е16.28 Чему равно значение выражения F(2023) / F(2020)?

    Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями: F(n) = 1 при n = 1; F(n) = n × F(n − 1), если n > 1. Чему равно значение выражения F(2023) / F(2020)? Ответ:   Демонстрационный вариант ЕГЭ 2023 г.  – задание №16 

    Читать далее

    Е16.27 Укажите наименьшее значение a, для которого F(a, 0) = 1392781243

    Обозначим частное от деления целочисленного натурального числа a на натуральное число b как a div b, а остаток как a mod b. Например, 13 div 3 = 4, 13 mod 3 = 1. Алгоритм вычисления значения функции F(a, b), где a и b – целые неотрицательные числа, задан следующими соотношениями: F(0, b) = b; F(a, …

    Читать далее

    Е16.26 Чему равно значение функции F(42)?

    Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями: F(n) = 1 при n = 1; F(n) = 3 × n + F(n — 2), если n > 1 и при этом n нечётно, F(n) = 4 × F(n / 2), если n > 1 и при этом n чётно. Чему …

    Читать далее

    Е16.25 Укажите количество таких значений n < 1 000 000 000, для которых F(n) = 2.

    Алгоритм вычисления значения функции F(n), где n – целое неотрицательное число, задан следующими соотношениями: F(0) = 0; F(n) = F(n – 1) + 1, если n нечётно; F(n) = F(n/2), если n > 0 и при этом n чётно. Укажите количество таких значений n < 1 000 000 000, для которых F(n) = 2. СтатГрад …

    Читать далее

    Е16.24 являющихся результатом вызова функции для значений n в диапазоне [40; 50]

    Алгоритм вычисления функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

    F(n) = n + 3, при n 3

    F(n) = F(n 2) + n, при n > 3 и четном значении F(n1),

    F(n) = F(n 2) + 2· n, при n > 3 и нечетном значении F(n1)

    Определите сумму значений, являющихся результатом вызова функции для значений n в диапазоне [40; 50]. Ответ:   Е. Джобс

    Читать далее

    Е16.23 F(n) = F(n – 1) – F(n – 2) + 3n, при n > 1 и n – четно

    Алгоритм вычисления функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

    F(0) = 1, F(1) = 3

    F(n) = F(n 1) F(n 2) + 3n, при n > 1 и n четно

    F(n) = F(n 2) F(n 3) + 2n, при n > 1 и n нечетно

    Чему равно значение функции F(40)? В ответе запишите только целое число Ответ:   Е. Джобс

    Читать далее

    Е16.22 Сколько существует таких чисел n, что 1 ≤ n ≤ 500 и F(n) = 8

    Алгоритм вычисления значения функции F(n), где n – целое неотрицательное число, задан следующими соотношениями: F(0) = 0; F(n) = F(n/2), если n > 0 и при этом n чётно; F(n) = 1 + F(n – 1), если n нечётно. Сколько существует таких чисел n, что 1 ≤ n ≤ 500 и F(n) = 8? Ответ: …

    Читать далее

    Е16.21 F(n) = 1 при n ≤ 1; F(n) = n · F(n – 1) при чётных n > 1;

    Алгоритм вычисления функции F(n) задан следующими соотношениями: F(n) = 1 при n ≤ 1; F(n) = n · F(n – 1) при чётных n > 1; F(n) = n + F(n – 2) при нечётных n > 1; Определите значение F(84). Ответ:   Тренировочный вариант от 16.11.2020 «Евгений Джобс»

    Читать далее

    Е16.20 для которых сумма цифр значения F(n) равна 27.

    Алгоритм вычисления функции F(n) задан следующими соотношениями: F(n) = n · n + 5 · n + 4, при n > 30 F(n) = F(n+1) + 3 · F(n+4), при чётных n ≤ 30 F(n) = 2 · F(n+2) + F(n+5), при нечётных n ≤ 30 Определите количество натуральных значений n из отрезка [1; 1000], …

    Читать далее

    Е16.19 F(0) = 0; F(n) = n + F(n – 3), если n > 0 и при этом n mod 3 = 0;

    F(0) = 0; F(n) = n + F(n – 3), если n > 0 и при этом n mod 3 = 0; F(n) = n + F(n – (n mod 3)), если n mod 3 > 0. Чему равно значение функции F(25)? Обозначим через a mod b остаток от деления натурального числа a на натуральное …

    Читать далее

    Автор — Лада Борисовна Есакова.

    Перед тем, как приступить к решению задач, нам нужно понять несколько несложных моментов.

    Рассмотрим десятичное число 875. Последняя цифра числа (5) – это остаток от деления числа 875 на 10. Последние две цифры образуют число 75 – это остаток от деления числа 875 на 100. Аналогичные утверждения справедливы для любой системы счисления:

    Последняя цифра числа – это остаток от деления этого числа на основание системы счисления.

    Последние две цифры числа – это остаток от деления числа на основание системы счисления в квадрате.

    Например, 212_{3} = 2+1*3+2*3^{2} = 23_{10}. Разделим 23 на основание системы 3, получим 7 и 2 в остатке (2 – это последняя цифра числа в троичной системе). Разделим 23 на 9 (основание в квадрате), получим 18 и 5 в остатке (5 = 12_{3}).

    Вернемся опять к привычной десятичной системе. Число 10^{5} = 100000. Т.е. 10 в степени k– это единица и k нулей.

    Аналогичное утверждение справедливо для любой системы счисления:

    Основание системы счисления в степени k в этой системе счисления записывается как единица и k нулей.

    Например, 2^{4}=16_{10}=10000_{2}.

    1. Поиск основания системы счисления

    Пример 1.

    В системе счисления с некоторым основанием десятичное число 27 записывается в виде 30. Укажите это основание.

    Решение:

    Обозначим искомое основание x. Тогда 27=30_{x}=0 cdot x^{0}+3 cdot x^{1}=3 cdot x.Т.е. x = 9.

    Ответ: 9

    Пример 2.

    В системе счисления с некоторым основанием десятичное число 13 записывается в виде 111. Укажите это основание.

    Решение:

    Обозначим искомое основание x. Тогда 13 = 111_{x} = 1*x^{0} + 1*x^{1} +1*x^{2}

    x^{2}+x+1 = 13

    x^{2}+x-12 = 0

    Решаем квадратное уравнение, получаем корни 3 и -4. Поскольку основание системы счисления не может быть отрицательным, ответ 3.

    Ответ: 3

    Пример 3

    Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 29 оканчивается на 5.

    Решение:

    Если в некоторой системе число 29 оканчивается на 5, то уменьшенное на 5 число (29-5=24) оканчивается на 0. Ранее мы уже говорили, что число оканчивается на 0 в том случае, когда оно без остатка делится на основание системы. Т.е. нам нужно найти все такие числа, которые являются делителями числа 24. Эти числа: 2, 3, 4, 6, 8, 12, 24. Заметим, что в системах счисления с основанием 2, 3, 4 нет числа 5 (а в формулировке задачи число 29 оканчивается на 5), значит остаются системы с основаниями: 6, 8, 12,

    Ответ: 6, 8, 12, 24

    Пример 4

    Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 71 оканчивается на 13.

    Решение:

    Если в некоторой системе число оканчивается на 13, то основание этой системы не меньше 4 (иначе там нет цифры 3).

    Уменьшенное на 3 число (71-3=68) оканчивается на 10. Т.е. 68 нацело делится на искомое основание системы, а частное от этого при делении на основание системы дает в остатке 0.

    Выпишем все целые делители числа 68: 2, 4, 17, 34, 68.

    2 не подходит, т.к. основание не меньше 4. Остальные делители проверим:

    68:4 = 17; 17:4 = 4 (ост 1) – подходит

    68:17 = 4; 4:17 = 0 (ост 4) – не подходит

    68:34 = 2; 2:17 = 0 (ост 2) – не подходит

    68:68 = 1; 1:68 = 0 (ост 1) – подходит

    Ответ: 4, 68

    2. Поиск чисел по условиям

    Пример 5

    Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 25, запись которых в системе счисления с основанием четыре оканчивается на 11?

    Решение:

    Для начала выясним, как выглядит число 25 в системе счисления с основанием 4.

    25_{10} = 121_{4} . Т.е. нам нужно найти все числа, не больше 121_{4}, запись которых оканчивается на 11. По правилу последовательного счета в системе с основанием 4,
    получаем числа 11_{4} и 111_{4}. Переводим их в десятичную систему счисления:

    11_{4}=1*4^{0}+1*4^{1}=5_{10}

    111_{4}=1*4^{0}+1*4^{1}+1*4^{2}=21_{10}

    Ответ: 5, 21

    3. Решение уравнений

    Пример 6

    Решите уравнение: 121_{x}+1_{10}=101_{7}

    Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).

    Решение:

    121_{x}+1_{10}=10_{17} Переведем все числа в десятичную систему счисления:

    1*x^{0}+2*x^{1}+1*x^{2}+1=1*7^{0}+0*7^{1}+1*7^{2}

    1 + 2*x + x^{2} + 1 = 1 + 49

    x^{2} + 2*x- 48=0

    Квадратное уравнение имеет корни -8 и 6. x=6_{10} (т.к. основание системы не может быть отрицательным). x=6_{10}=20_{3}.

    Ответ: 20

    4. Подсчет количества единиц (нулей) в двоичной записи значения выражения

    Для решения этого типа задач нам нужно вспомнить, как происходит сложение и вычитание «в столбик»:

    При сложении происходит поразрядное суммирование записанных друг под другом цифр, начиная с младших разрядов. В случае, если полученная сумма двух цифр больше или равна основанию системы счисления, под суммируемыми цифрами записывается остаток от деления этой суммы на основание системы, а целая часть от деления этой суммы на основание системы прибавляется к сумме следующих разрядов.

    При вычитании происходит поразрядное вычитание записанных друг под другом цифр, начиная с младших разрядов. В случае, если первая цифра меньше второй, мы «занимаем» у соседнего (большего) разряда единицу. Занимаемая единица в текущем разряде равна основанию системы счисления. В десятичной системе это 10, в двоичной 2, в троичной 3 и т.д.

    Пример 7

    Сколько единиц содержится в двоичной записи значения выражения: 4^{2020} + 2^{2017} -15?

    Решение:

    Представим все числа выражения, как степени двойки:

    4^{2020} + 2^{2017} -15=2^{4040}+2^{2017}-2^{4}+2^{0}

    В двоичной записи двойка в степени n выглядит, как 1 и n нулей. Тогда суммируя 4^{4040} и 2^{2017}, получим число, содержащее 2 единицы:

    1

    Теперь вычтем из получившегося числа 10000. По правилам вычитания занимаем у следующего разряда.

    2

    Теперь прибавляем к получившемуся числу 1:

    3

    Видим, что у результата 2013+1+1=2015 единиц.

    Ответ: 2015.

    Благодарим за то, что пользуйтесь нашими публикациями.
    Информация на странице «Задача №16. Поиск основания системы по окончанию числа, уравнения и различные кодировки, арифметические действия в различных системах.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
    Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
    Также вы можете воспользоваться другими статьями из данного раздела.

    Публикация обновлена:
    08.03.2023


    «ИНФОРМАТИКА» 11 КЛАСС

    Рабочая
    тетрадь

    РАЗДЕЛ: Программирование

    ТЕМА: Решение
    задач 16 ЕГЭ

    Автор-разработчик:

    Ворона Елена
    Дмитриевна,

    учитель
    информатики

    МБУ «Школа
    №93»

     г.о.Тольятти

    Задачи для самостоятельного решения

    Рекурсия.
    Рекурсивные процедуры и функции

    16.1                  
    Простая:

    (П1) 
    Алгоритм вычисления функции F(
    n) задан
    следующими соотношениями:

                  F(n) = 1 при
    n = 1

                  F(n) = 2·F(n1) + n + 3, если n > 1

    Чему равно значение функции F(19)?

    (П9)
    Алгоритм вычисления функции F(
    n) задан
    следующими соотношениями:

                  F(n) = n3 при n
    > 16

                  F(n) = 2·F(n+1) + 2n + 3,
    если
    n £ 16

    Чему
    равно значение функции F(2)?

    16.2                  
    Четность:

    (П11)
    Алгоритм вычисления функции F(
    n) задан
    следующими соотношениями:

                  F(n) = 1 при
    n = 1

                  F(n) = 2·F(n1), если n чётно,

                  F(n) = 5n + F(n2), если n нечётно.

    Чему
    равно значение функции F(64)?

    (П13)
    Алгоритм вычисления функции F(
    n) задан
    следующими соотношениями:

                  F(n) = 2·n при n
    < 3

                  F(n) = 3n + 5 +  F(n2), если n чётно,

                  F(n) = n + 2·F(n6), если n нечётно.

    Чему равно
    значение функции F(61)?

    (П14)
    Алгоритм вычисления функции F(
    n) задан
    следующими соотношениями:

                  F(n) = –n при n
    < 0

                  F(n) = 2n + 1 +  F(n3), если n чётно,

                  F(n) = 4n + 2·F(n4), если n нечётно.

    Чему
    равно значение функции F(33)?

    16.3                  
    Кратность:

    (П16)
    Алгоритм вычисления функции F(
    n) задан
    следующими соотношениями:

                  F(n) = 1+2n при n
    < 5

                  F(n) = 2·(n + 1)·F(n2), если n делится
    на 3,

                  F(n) = 2·n + 1 + F(n1) + 2·F(n2), если n не
    делится на 3.

    Чему равно значение функции F(15)?

    (П45 Амеличев) Алгоритм
    вычисления функции F(
    n) задан
    следующими соотношениями:

    F(n) = n
    при n ≤ 3;

    F(n) = n
    * n * n + F(n – 1),
    если n > 3 и дает остаток 0 при делении
    на 3

    F(n) = 4
    + F(n // 3),
    если n > 3 и дает остаток 1 при делении
    на 3

    F(n) = n
    * n + F(n – 2),
    если n > 3 и дает остаток 2 при делении
    на 3

    Здесь // обозначает деление нацело. В качестве ответа на
    задание выведите значение
    F(100).

    16.4                  
    Две
    функции: 

    (П20)
    Алгоритм вычисления функций F(
    n) и G(n) задан
    следующими соотношениями:

                  F(1) = G(1) = 1

                  F(n) = 3·F(n1) + G(n1) – n
    +
    5, если
    n > 1

                  G(n) = F(n1) + 3·G(n1) – 3·n, если n > 1

    Чему
    равно значение F(14) + G(14)?

    16.5                 
    Количество (сумма)
    простые:
     

    (П21) Определите, сколько
    символов * выведет эта процедура при вызове F(28):

    def F( n
    ):

     
    print(‘*’)

      if n
    >= 1:

       
    print(‘*’)

        F(n-1)

        F(n-2)

    (П24)
    Определите, сколько символов * выведет эта

    процедура
    при вызове F(280):

    def
    F( n ):

      print(‘*’)

      if n
    >= 1:

       
    print(‘*’)

       
    F(n-1)

       
    F(n//3)

        print(‘*’)

    (7756)(11) Чему равна сумма всех чисел, напечатанных
    на экране при выполнении вызова F(5)?

    def F(n):

        print(n)

        if n > 0:

            F(n
    — 1)

            F(n
    — 3)

    16.6                  
    Мин(макс)
    с неизвестным числом элементов

    (П26)
    Определите наименьшее значение
    n, при
    котором сумма чисел, которые будут выведены при вызове F(
    n), будет
    больше 1000000. Запишите в ответе сначала найденное значение
    n, а затем
    через пробел – соответствующую сумму выведенных чисел.

    def F( n
    ):

     
    print(n+1)

      if n
    > 1:

       
    print(n+5)

       
    F(n-1)

        F(n-2)

    (П31
    Муфаззалов) Определите наименьшее значение
    n, при
    котором значение F(
    n), будет
    больше числа 320. Запишите в ответе сначала найденное значение
    n, а затем
    через пробел – соответствующее значение F(
    n).

    def F(n):

      if
    n>0:

       
    return n%10*F(n//10)

      else: return 1

    (П32
    Муфаззалов) Определите наибольшее трехзначное значение
    n, при
    котором значение F(
    n), будет
    больше числа 7. Запишите в ответе сначала найденное значение
    n, а затем
    через пробел – соответствующее значение F(
    n).

    def F(n):

      if
    n<10:

       
    return n

      else:

       
    m=F(n//10)

       
    d=m%10;

        if
    m<d: return d

        else: return
    m

    (П35 Муфаззалов) Определите наименьшее значение суммы n+m такое, что значение F(nm) больше числа 15 и выполняется
    условие
     n и m – натуральные числа. Запишите в ответе
    сначала значения
    n и m, при которых
    указанная сумма достигается, в порядке неубывания, а затем – соответствующее
    значение F(
    nm). Числа в ответе разделяйте пробелом.

    def F(n,m):

         if
    n<m:   n,m = m,n

        if n != m:    return F(n-m,m)

     elsereturn n

    16.7                  
    Количество 
    чисел по условию

    (П47) Алгоритм вычисления функции
    F(
    n) задан следующими соотношениями:

    F(n) = n при n
    ≤ 3;

    F(n) = F(n1) + 2 · F(n / 2)  при
    чётных
    n > 3;

    F(n) = F(n1) + F(n3)  при
    нечётных
    n > 3;

    Определите количество натуральных значений n, при
    которых
    F(n) меньше,
    чем 108.

    16.8                  
    Сумма
    цифр числа, без цифры (с цифрой)…

    (П54) Алгоритм вычисления функции
    F(
    n) задан следующими соотношениями:

                  F(n) = 2 ·
    n · n
    ·
    n + n
    ·
    n при n > 25

                  F(n) = F(n+2) + 2
    ·
    F(n+3), если
    n £ 25

    Чему равна сумма цифр значения
    функции F(2)?

    (П56) Алгоритм вычисления функции
    F(
    n) задан следующими соотношениями:

                  F(n)
    n · n · n + n
    при n > 20

                  F(n)
    = 3 · F(n+1) + F(n+3),
    при чётных n £ 20

                  F(n)
    = F(n+2) + 2 · F(n+3),
    при нечётных n £ 20

    Определите количество натуральных
    значений
    n из отрезка [1; 1000], при
    которых значение
    F(n) не
    содержит цифру 1.

    (П59) Алгоритм вычисления функции
    F(
    n) задан следующими соотношениями:

    F(n) =  n
    ·
    n + 5 · n + 4, при
    n > 30

    F(n) = F(n+1) + 3
    ·
    F(n+4), при
    чётных
    n £ 30

    F(n) = 2 ·
    F(n+2) +  F(n+5), при
    нечётных
    n £ 30

    Определите количество натуральных
    значений
    n из отрезка [1; 1000], для
    которых сумма цифр значения
    F(n) равна
    27.

    (П62) Алгоритм вычисления функции
    F(
    n) задан следующими соотношениями:

                  F(n) =  2
    ·
    n · n + 4 ·
    n + 3, при n
    £ 15

                  F(n) = F(n1) + n
    ·
    n + 3, при n > 15,
    кратных 3

                  F(n) = F(n2) + n – 6, при
    n > 15, не кратных 3

    Определите количество натуральных
    значений
    n из отрезка [1; 1000], для
    которых все цифры значения
    F(n)
    нечётные.

    (П66) Алгоритм вычисления функции
    F(
    n) задан следующими соотношениями:

                  F(n) =  n · n + 11,
    при
    n £ 15

                  F(n) = F(n // 2) + n
    ·
    n · n – 5 ·
    n, при чётных n > 15

                  F(n) = F(n1) + 2
    ·
    n + 3, при нечётных n > 15

    Здесь «//» обозначает деление
    нацело. Определите количество натуральных значений
    n из
    отрезка [1; 1000], для которых значения
    F(n)
    содержит не менее трёх цифр 6.

    16.9                  
    Что
    будет выведено

    (10501) (4321021) Что выведет программа при
    вызове F(4)? В ответе запишите последовательность выведенных цифр слитно (без
    пробелов).

    def
    F(n):

        print
    (n)

        if n > 2:

            F(n
    − 1)

            F(n
    − 2)

            F(n
    − 3)

    16.10             
    Задачи
    с бесконечными выражениями

    (П71) (Е. Джобс) Алгоритм вычисления функции F(n), где n – натуральное число, задан
    следующими соотношениями:

    F(n)
    =
    5
    при n
    = 0,

    F(n)
    = 3
    ×F(n
    4)
    ,
    когда n
    > 0,

    F(n)
    =
    F(n
    +
    3),
    когда n
    < 0
    .

    Чему равно значение F(43)?

    (81П) Алгоритм вычисления функции F(n), где n – натуральное число, задан
    следующими соотношениями:

    F(n)
    =
    n, при n
    £
    5
    ,

    F(n)
    =
    n + F(n
    /
    5
    + 1), когда
    n
    >
    5 и делится на 5,

    F(n)
    =
    n + F(n
    +

    6) , когда
    n
    >
    5 и не делится на 5.

    Назовите минимальное значение n, для которого F(n)
    определено и больше
    1000.

    (П76) Алгоритм вычисления функции F(n), где n – натуральное число, задан
    следующими соотношениями:

    F(n)
    =
    1,
    при n
    £
    1
    ,

    F(n)
    = 3 +
    F(n
    /
    2
    – 1), когда
    n
    >
    1 и чётное,

    F(n)
    =
    n + F(n
    +

    2) , когда
    n
    >
    1 и нечётное.

    Назовите минимальное значение n, для которого F(n)
    = 19.

    В
    рабочей тетради использованы материалы сайта https://kpolyakov.spb.ru/
    с разрешения автора К.Ю. Полякова.

    Обратная
    связь:

    Контактное
    лицо: Пронина Ирина Сергеевна

    Телефон:
    8(905)305-72-41

    E-mail: poninairina920@gmail.com

    Скачано с www.znanio.ru

    В решение заданий демо-версии используется язык программирования Python.

    Задание 1. Анализ информационных моделей

    На рисунке схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о протяжённости каждой из этих дорог (в километрах).

    Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова сумма протяжённостей дорог из пункта D в пункт В и из пункта F в пункт A. В ответе запишите целое число.

    На графе расставим веса вершин.
    Мы видим, что вершина В уникальна, имеет вес 2 и связана с двумя «тройками по весу».
    Из таблицы видим, В это 4, далее видим, что «тройки по весу» это вершины 2 и 7. 
    7 вершина связана кроме В, еще с двумя «тройками по весу», значит D это 7, а F это 2. 

    Далее 2 и 7 вершины ведут нас к 5, значит А это 5, оставшаяся «тройка» это вершина Е под номером 6.
    Рассуждая дальше видим, что С это 1, G это 2.

    Сумма дорог BD + AF = 53 + 5 = 58

     

    Ответ: 58 

    Задание 2.  Построение таблиц истинности логических выражений

    Миша заполнял таблицу истинности логической функции F 

    F= ¬(y → x) v (z→ w) v ¬z , но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z. 

    Определите, какому столбцу таблицы соответствует каждая из переменных w, x, y, z. В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно. 

    Пример. Функция задана выражением ¬x v y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид. В этом случае первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе следует написать yx. 

    ¬(y → x) v (z→ w) v ¬z=0. Следовательно y → x =1, z→ w=0,  z=1. Значит третий столбец z. z→ w=0, значит w=0, и это может быть только 4 столбец. y → x =1, следовательно из второй строки мы видим, что первый столбец может быть только у, а второй х.

    y  x  z w
    0 0 1 0
    0 1 1 0
    1 1 1 0

    Решение на Python

      Ответ: YXZW 

    Задание выполняется с использованием прилагаемых файлов

    Задание 3.  Базы данных. Файловая система 

    В прикрепленном файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в
    магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня.

    На рисунке приведена схема указанной базы данных.

    Используя информацию из приведённой базы данных, определите общий вес
    (в кг) крахмала картофельного, поступившего в магазины Заречного района
    за период с 1 по 8 июня включительно. В ответе запишите только число.

    На третьем листе книги применим фильтр по району и получим ID четырех магазинов. 

    На втором листе применим фильтр по товару и получим ID товара.

    На первом листе применим фильтры по ID товара и ID магазинов и типу операции. Все даты попадают в интервал от 1 до 8 июня. Получим:

    Поступило в продажу 710 упаковок. В упаковке 0,5 кг. Получим 355 кг.

    Ответ: 355 

    Задание 4.  Кодирование и декодирование информации

    По каналу связи передаются сообщения, содержащие только буквы из набора: А, З, К, Н, Ч. Для передачи используется двоичный код,удовлетворяющий прямому условию Фано, согласно которому никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений.

    Кодовые слова для некоторых букв известны: Н – 1111, З – 110. Для трёх оставшихся букв А, К и Ч кодовые слова неизвестны. Какое количество двоичных знаков потребуется для кодирования слова КАЗАЧКА, если известно, что оно закодировано минимально возможным количеством двоичных знаков?

     

    Ответ: 14

    Задание 5.  Анализ и построение алгоритмов для исполнителей

    На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему
    новое число R следующим образом.

    1. Строится двоичная запись числа N.
    2. Далее эта запись обрабатывается по следующему правилу:
    а) если сумма цифр в двоичной записи числа чётная, то к этой записи справа дописывается 0, а затем два левых разряда заменяются на 10;
    б) если сумма цифр в двоичной записи числа нечётная, то к этой записи справа дописывается 1, а затем два левых разряда заменяются на 11. 

    Полученная таким образом запись является двоичной записью искомого числа R.Например, для исходного числа 610 = 1102 результатом является число
    10002 = 810, а для исходного числа 410 = 1002 результатом является число 11012 = 1310.
    Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 40. В ответе запишите это число в десятичной системе счисления.

    Минимальное R, большее 40, это 41.
    В результате выполнения алгоритма число R должно либо начинаться на 10 и оканчиваться 0, либо начинаться на 11 и оканчиваться 1.
    Из чисел, больших 41, это 42, 44, 46, 49, и т.д.
    Мы должны найти минимальное N, из которого данное число получено.
    Поскольку первые цифры заменялись, то мы видим, что данные числа могли быть получены из чисел 29, 30, 23, 16. 
    Из которых 16 минимальное, и меньше уже быть не может.

    ИЛИ программное решение

    Ответ: 16

     

    Задание 6.  Определение результатов работы простейших алгоритмов

    Исполнитель Черепаха действует на плоскости с декартовой системой координат.
    В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды:
    Вперёд n (где n–целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке.
    Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. 

    Черепахе был дан для исполнения следующий алгоритм:
    Повтори 7 [Вперёд 10 Направо 120].
    Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.


      ИЛИ

    Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 5 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n– целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n– целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m – целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m– целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. 

    Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз.

    Черепахе был дан для исполнения следующий алгоритм:
    Повтори 2 [Вперёд 10 Направо 90 Вперёд 20 Направо 90]
    Поднять хвост
    Вперёд 3 Направо 90 Вперёд 5 Налево 90
    Опустить хвост
    Повтори 2 [Вперёд 70 Направо 90 Вперёд 80 Направо 90]

    Определите, сколько точек с целочисленными координатами будут находиться внутри пересечения фигур, ограниченных заданными алгоритмом линиями, включая точки на границах этого пересечения. 

    Сначала нужно построить фигуру. 
    Это можно сделать к примеру, на тетрадном листе, при помощи библиотеки Turtle или в Excel.

     

    Далее мы находим уравнения прямых, которыми ограничена фигура и решаем
    систему уравнений программно.

    ИЛИ
    Фигуру можно построить программно или к примеру, в Excel.
    Далее анализируем и считаем точки.

    Ответ: 1 задание  — 38, 2 задание — 128

    Задание 7.  Кодирование и декодирование информации. Передача информации

    Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 28 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован с разрешением в 3,5 раза выше и частотой дискретизации в 2 раза меньше, чем в первый раз. Сжатие данных не производилось. Укажите размер полученного при повторной записи файла в Мбайт. В ответе запишите только целое число, единицу измерения писать не нужно.

    I = ν ⋅ i ⋅ t ⋅ k, где ν — частота дискретизации (Гц),

     i — разрешение (бит), t — время (с), k — количество дорожек (1 -моно, 2- стерео, 4 — квадро)

    I1 = ν ⋅ i ⋅ t 
    I2 = ν/2 ⋅ 3,5 ⋅ i ⋅ t ⋅ 2 = 3,5 ⋅ I1

    I2 = 3,5 · 28 = 98 

     Ответ: 98

    Задание 8. Перебор слов и системы счисления

    Определите количество пятизначных чисел, записанных в восьмеричной системе счисления, в записи которых только одна цифра 6, при этом никакая нечётная цифра не стоит рядом с цифрой 6.

    * * * * * — пятизначное число
    В восьмеричной системе счисления в алфавите 8 цифр: 0..7.
    Первая цифра 0 быть не может.
    Цифра 6 — одна, при этом стоит рядом только с четными цифрами — 0, 2 или 4.
    Получим:

    6 * * * * — вариантов 3 ⋅ 7 ⋅ 7 ⋅ 7 = 1029
    * 6 * * * — вариантов 2 ⋅ 3 ⋅ 7 ⋅ 7 = 294
    * * 6 * * — вариантов 6 ⋅ 3 ⋅ 3 ⋅ 7 = 378
    * * * 6 * — вариантов 6 ⋅ 7 ⋅ 3 ⋅ 3 = 378
    * * * * 6 — вариантов 6 ⋅ 7 ⋅ 7 ⋅ 3 = 882

    Ответ: 2961

    Задание выполняется с использованием прилагаемых файлов

    Задание 9. Работа с таблицами

    Файл с данными

    Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
    – в строке только одно число повторяется дважды;
    – среднее арифметическое неповторяющихся чисел строки не больше суммы повторяющихся чисел.
    В ответе запишите только число.

    Для решения этой задачи понадобится 10 вспомогательных столбцов. Сначала мы посчитаем количество повторяющихся чисел в каждой строке.

    Затем сумму каждой строки диапазона H:M. Если повторений нет, то эта сумма равна 6.

      Далее мы найдем среднее арифметическое неповторяющихся значений.

    Затем найдем сумму повторяющихся значений.

    Затем проверим соблюдение двух условий. И подсчитаем количество строк, в которых соблюдаются оба условия.

    Ответ: 2241

    Задание выполняется с использованием прилагаемых файлов

    Задание 10. Поиск символов в текстовом редакторе

    Файл с данными

    Текст произведения Льва Николаевича Толстого «Севастопольские рассказы» представлен в виде файлов различных форматов. Откройте один из файлов и определите, сколько раз встречается в тексте отдельное слово «теперь» со строчной буквы. Другие формы этого слова учитывать не следует.
    В ответе запишите только число.

    В текстовом редакторе используем инструмент найти (по умолчанию он не учитывает регистр, в расширенном поиске есть кнопка больше, где можно проверить настройки). Ищем слово целиком. Ставим галочку учитывать регистр. Слово теперь со строчной буквы встречается 45 раз.

    Ответ: 45

    Задание 11. Вычисление количества информации

    При регистрации в компьютерной системе каждому объекту присваивается идентификатор, состоящий из 250 символов и содержащий только десятичные цифры и символы из 1650-символьного специального алфавита. В базе данных для хранения каждого идентификатора отведено одинаковое и минимально возможное целое число байт. При этом используется посимвольное кодирование идентификаторов, все символы кодируются одинаковым и минимально возможным количеством бит. Определите объём памяти (в Кбайт), необходимый для хранения 65 536 идентификаторов. В ответе запишите только целое число – количество Кбайт.

     

    I = K · i,    N = 2 i

    ID : ****….**** – всего 250 различных символов в наборе

    N = 10 + 1650 = 1660,  1024<1660<2048, 2048 = 211, значит  для кодирования одного символа нужно 11 бит.

    IID = 250 · 11 = 2750 бит = 343,75 байт ≈ 344 байт – отводится на идентификатор целое число байт

    I65536 = 65536 ⋅ 344 = 22544384 байта = 22016 Кбайт– всего

    Ответ: 22016

    Задание 12. Выполнение алгоритмов для исполнителей

    Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

    А) заменить (v, w). Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. 
    Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.
    Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

    Б) нашлось (v). Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

     Цикл
        ПОКА условие
            последовательность команд
        КОНЕЦ ПОКА

    выполняется, пока условие истинно.

    В конструкции

        ЕСЛИ условие
            ТО команда 1
        КОНЕЦ ЕСЛИ

    выполняется команда 1 (если условие истинно).

    В конструкции

        ЕСЛИ условие
            ТО команда 1
            ИНАЧЕ команда 2
        КОНЕЦ ЕСЛИ

    выполняется команда 1 (если условие истинно) или команда 2 (если условие ложно).

    Дана программа для Редактора:
    НАЧАЛО
         ПОКА нашлось (>1) ИЛИ нашлось (>2) ИЛИ нашлось (>0)
              ЕСЛИ нашлось (>1)
                  ТО заменить (>1, 22>)
              КОНЕЦ ЕСЛИ
              ЕСЛИ нашлось (>2)
                  ТО заменить (>2, 2>)
              КОНЕЦ ЕСЛИ
              ЕСЛИ нашлось (>0)
                  ТО заменить (>0, 1>)
              КОНЕЦ ЕСЛИ
         КОНЕЦ ПОКА
    КОНЕЦ
    На вход приведённой выше программе поступает строка, начинающаяся с символа «>», а затем содержащая 39 цифр «0», n цифр «1» и 39 цифр «2», расположенных в произвольном порядке. Определите наименьшее значение n, при котором сумма числовых значений цифр строки, получившейся в результате выполнения программы, является простым числом.

    def pr(n): #функция определяет простое ли число
        for i in range(2,int(n**0.5)+1):
            if (n%i) == 0:
                return False
        return True   

    for n in range(100): #перебираем n
        s=’>’ + 39*’0′ + n*’1′ + 39*’2′
        while ‘>1’ in s or ‘>2’ in s or ‘>0’ in s:
            if ‘>1’ in s:
                s=s.replace(‘>1′,’22>’,1)

            if ‘>2’ in s:
                s=s.replace(‘>2′,’2>’,1)

            if ‘>0’ in s:
                s=s.replace(‘>0′,’1>’,1)

        sum_s = 0
        for i in s[:-1]: #считаем сумму цифр в строке
            sum_s += int(i)
        if pr(sum_s): #проверяем на простоту
            print(n)
            break

    Ответ: 5

    Задание 13. Поиск путей в графе

    На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой.
    Определите количество различных путей ненулевой длины, которые начинаются и заканчиваются в городе Е, не содержат этот город в качестве промежуточного пункта и проходят через промежуточные города не более одного раза.

    Начнем подсчет из вершины Е налево через В и возвращаемся в Е через Л.

     

    Ответ: 21

    Задание 14. Кодирование чисел. Системы счисления

    Операнды арифметического выражения записаны в системе счисления с основанием 15. 
    123
    x515 + 1x23315
    В записи чисел переменной x обозначена неизвестная цифра из алфавита 15-ричной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 14. Для найденного значения x вычислите частное от деления значения арифметического выражения на 14 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.

    for x in range(15):
        s1=’123’+ str(x) +’5′
        s2=’1’+ str(x) +’233′
        n= int(s1,15)+ int(s2,15)

        if n%14 == 0:
            print(n//14)
            break

    Ответ: 8767

    Задание 15. Преобразование логических выражений

    На числовой прямой даны два отрезка: D = [17; 58] и C = [29; 80]. Укажите наименьшую возможную длину такого отрезка A, для которого логическое выражение
    (x ∈ D) → ((¬(x ∈ C) & ¬(x ∈ A)) → ¬(x ∈ D)) истинно (т.е. принимает значение 1) при любом значении переменной х.

      def deli(n,m):
        if n%m == 0:
            return True

    for A in range(1,1000):
        Ok = True
        for x in range(1,10000):
            Ok*=( (not(deli(x,2)) or (not(deli(x,3)))) or ((x+A)>=100) )

        if Ok:
            print(A)
            break

    Ответ: 94

    Задание 16. Рекурсивные алгоритмы

    Алгоритм вычисления значения функции F(n), где n – натуральное число,
    задан следующими соотношениями:
    F(n) = 1 при n = 1;
    F(n) = n × F(n — 1), если n > 1.
    Чему равно значение выражения
    F(2023) / F(2020)?

    F(2023) = 2023! = 2023 ⋅ 2022!

    F(2023)/F(2020) = (2023 ⋅ 2022 ⋅ 2021 ⋅ 2020!)/2020! = 2023 ⋅ 2022 ⋅ 2021 =

    = 8266912626

    Ответ: 8266912626

    Задание выполняется с использованием прилагаемых файлов

    Задание 17. Проверка на делимость

    Файл с данными

    В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –10 000 до 10 000 включительно. Определите количество пар последовательности, в которых
    только одно число оканчивается на 3, а сумма квадратов элементов пары не меньше квадрата максимального элемента последовательности, оканчивающегося на 3. В ответе запишите два числа: сначала количество найденных пар, затем максимальную из сумм квадратов элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.

     f= open(’17.txt’)
    p=[int(i) for i in f]
    f.close()

    k = 0
    PP = 0
    M3 = 0

    for i in p:
        if (abs(i))%10 == 3:
            M3 = max(i, M3)

    for i in range(1,len(p)): #Осторожно, скобки!
        if ( ((abs(p[i-1])%10 == 3) + ((abs(p[i])% 10 == 3)) ==1 ) and ((p[i-1]**2 + p[i]**2) >= M3**2) ):
            k+=1
            PP = max(PP, p[i-1]**2 + p[i]**2)

    print(k,PP)

    Ответ: 180  190360573

    Задание выполняется с использованием прилагаемых файлов

    Задание 18. Робот-сборщик монет

    Файл с данными

    Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

    Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

    Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.Пример входных данных: 

    1 8 8 4
    10 1 1 3
    1 3 12 2
    2 3 5 6

    Для указанных входных данных ответом должна быть пара чисел 41 и 22.

    Сначала скопируем таблицу рядом, начиная со столбца АА, можно уменьшить ширину столбца до 4-5. Ячейка АА1=А1. Ячейка АВ1 = АА1+В1, протягиваем ее до АТ1. Ячейка АА2 = АА1 + А2, протягиваем ее до АА20. Далее ячейка АВ2 = В2+МАКС(АА2;АВ1), протягиваем ее на весь оставшийся диапазон, копируем только значения, не трогая стен. 

     

    Справа от стен формулы повторяют крайний левый рял, столбец АА, снизу от стен формулы копируют верхнюю строку 1.

    Далее делаем замену всех формул МАКС на МИН.

    Ответ: 1099 1026

    Задание 19. Выигрышная стратегия. Задание 1

    Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

    Игра завершается в тот момент, когда количество камней в куче становится не менее 129. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу из 129 или больше камней.

    В начальный момент в куче было S камней, 1 ≤ S ≤ 128. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

    При значениях S < 64 у Пети есть возможность сделать такой ход, что Ваня не сможет выиграть своим первым ходом. При значении S = 64 Петя своим первым ходом может получить 65 или 128 камней в куче. Во всех случаях Ваня увеличивает количество камней в куче в два раза и выигрывает своим первым ходом.

    Ответ: 64

    Задание 20. Выигрышная стратегия. Задание 2

     Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причем одновременно выполняются два условия:

    • Петя не может выиграть за один ход;
    • Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

    Найденные значения запишите в порядке возрастания.

     Значение S должно быть меньше 64, поскольку иначе Ваня сможет выиграть своим первым ходом.

     

    Ответ: 32    63

    Задание 21. Выигрышная стратегия. Задание 3

    Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

    • у Вани есть выигрышная стратегия, позволяющая ему выиграть
      первым или вторым ходом при любой игре Пети;
    • у Вани нет стратегии, которая позволит ему гарантированно выиграть
      первым ходом.

    Если найдено несколько значений S, в ответе запишите минимальное из них.

     

     

    Ответ: 62

    Задание 22. Многопроцессорные системы 

    В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
    Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы – время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
    Типовой пример организации данных в файле:

    Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
    Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемого файла.

    В независимых процессах время считается от 0,
    в зависимых прибавляется к времени процесса, от которого зависит.

     

    Ответ: 17

    Задание 23. Анализ программы с циклами и условными операторами

    Исполнитель преобразует число на экране.
    У исполнителя есть две команды, которые обозначены латинскими буквами:
    A. Прибавить 1
    B. Умножить на 2
    Программа для исполнителя – это последовательность команд. Сколько существует программ, для которых при исходном числе 1 результатом является число 35, при этом траектория вычислений содержит число 10 и не содержит 17?
    Траектория вычислений программы – это последовательность результатов
    выполнения всех команд программы.
    Например, для программы ABA при
    исходном числе 7 траектория будет состоять из чисел 8, 16, 17.

    def f(x, y):
        if x == y:
            return 1
        if x > y or x == 17:
            return 0
        else:
            return f(x + 1, y) + f (2 * x, y)

    print (f(1,10) * f(10, 35))

    Ответ: 98

    Задание выполняется с использованием прилагаемых файлов

    Задание 24. Анализ программы с циклами и условными операторами

    Файл с данными

    Текстовый файл состоит из символов A, C, D, F и O. Определите максимальное количество идущих подряд пар символов вида согласная + гласная
    в прилагаемом файле. Для выполнения этого задания следует написать программу.

    f=open(’24.txt’) 
    p= f.readline()
    f.close()

    PP = [‘CA’, ‘CO’, ‘DA’, ‘DO’, ‘FA’, ‘FO’]
    M=k=0

    for i in range(1, len(p), 2):
        x = p[i-1] + p[i]
        if x in PP:
            k += 1
        else:
            k = 0    
        M=max(M,k)
    print(M)

    Ответ: 95

    Задание 25. Анализ программы с циклами и условными операторами

    Назовём маской числа последовательность цифр, в которой также могут
    встречаться следующие символы:
    – символ «?» означает ровно одну произвольную цифру;
    – символ «*» означает любую последовательность цифр произвольной длины;
    в том числе «*» может задавать и пустую последовательность.

    Например, маске 123*4?5 соответствуют числа 123405 и 12300405. 

    Среди натуральных чисел, не превышающих 1010, найдите все числа, соответствующие маске 1?2139*4, делящиеся на 2023 без остатка.
    В ответе запишите в первом столбце таблицы все найденные числа в порядке возрастания, а во втором столбце – соответствующие им результаты деления этих чисел на 2023. Количество строк в таблице для ответа избыточно.

    Самый простой способ использовать библиотеку fnmatch.
    Функция fnmatch() проверяет, соответствует ли строка шаблонной строке, возвращая True или False

    или так полным перебором:

    y = {»,’0′,’00’,’000′}
    for x in y:
        for j in range(10):
            s = ‘1’ + str(j) + ‘2139’ + x + ‘4’
            if int(s) % 2023 == 0:
                print (s, int(s)//2023)

    for x in range (1000):
        for j in range(10):
            s = ‘1’ + str(j) + ‘2139’ + str(x) + ‘4’
            if int(s) % 2023 == 0:
                print (s, int(s)//2023

    Ответ: 162139404 80148
    1321399324 653188
    1421396214 702618
    1521393104 752048

    Задание выполняется с использованием прилагаемых файлов

    Задание 26. Анализ программы с циклами и условными операторами

    В магазине для упаковки подарков есть N кубических коробок. Самой интересной считается упаковка подарка по принципу матрёшки – подарок упаковывается в одну из коробок, та в свою очередь в другую коробку и т.д.
    Одну коробку можно поместить в другую, если длина её стороны хотя бы на 3 единицы меньше длины стороны другой коробки. Определите наибольшее количество коробок, которое можно использовать для упаковки одного подарка, и максимально возможную длину стороны самой маленькой коробки, где будет находиться подарок. Размер подарка позволяет поместить его в самую маленькую коробку.
    Входные данные
    В первой строке входного файла находится число N – количество коробок в магазине (натуральное число, не превышающее 10 000). В следующих N строках находятся значения длин сторон коробок (все числа натуральные, не превышающие 10 000), каждое – в отдельной строке.
    Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе.
    Типовой пример организации данных во входном файле
    5
    43
    40
    32
    40
    30
    Пример входного файла приведён для пяти коробок и случая, когда минимальная допустимая разница между длинами сторон коробок, подходящих для упаковки «матрёшкой», составляет 3 единицы. При таких исходных данных условию задачи удовлетворяют наборы коробок с длинами сторон 30, 40 и 43 или 32, 40 и 43 соответственно, т.е. количество коробок равно 3, а длина стороны самой маленькой коробки равна 32.
    Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.

    Задание выполняется с использованием прилагаемых файлов

    Задание 27. Анализ программы с циклами и условными операторами

    У медицинской компании есть N пунктов приёма биоматериалов на анализ. Все пункты расположены вдоль автомагистрали и имеют номера, соответствующие расстоянию от нулевой отметки до конкретного пункта. Известно количество пробирок, которое ежедневно принимают в каждом из пунктов. Пробирки перевозят в специальных транспортировочных контейнерах вместимостью не более 36 штук. Каждый транспортировочный контейнер упаковывается в пункте приёма и вскрывается только в лаборатории.
    Стоимость перевозки биоматериалов равна произведению расстояния от пункта до лаборатории на количество контейнеров с пробирками. Общая стоимость перевозки за день равна сумме стоимостей перевозок из каждого пункта в лабораторию. Лабораторию расположили в одном из пунктов приёма биоматериалов таким образом, что общая стоимость доставки биоматериалов из всех пунктов минимальна.
    Определите минимальную общую стоимость доставки биоматериалов из всех пунктов приёма в лабораторию.
    Входные данные

    Файл А
    Файл В

    Дано два входных файла (файл A и файл B), каждый из которых в первой строке содержит число N (1 ≤ N ≤ 10 000 000) – количество пунктов приёма биоматериалов. В каждой из следующих N строк находится два числа: номер пункта и количество пробирок в этом пункте (все числа натуральные, количество пробирок в каждом пункте не превышает 1000). Пункты перечислены в порядке их расположения вдоль дороги, начиная от нулевой отметки.
    В ответе укажите два числа: сначала значение искомой величины для файла
    А, затем – для файла B.
    Типовой пример организации данных во входном файле
    6
    1 100
    2 200
    5 4
    7 3
    8 2
    10 190
    При таких исходных данных и вместимости транспортировочного контейнера, составляющей 96 пробирок, компании выгодно открыть лабораторию в пункте 2. В этом случае сумма транспортных затрат составит: 1 ∙ 2 + 3 ∙ 1 + 5 ∙ 1 + 6 ∙ 1 + 8 ∙ 2.

    Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов. 
    Предупреждение:
    для обработки файла B не следует использовать переборный алгоритм, вычисляющий сумму для всех возможных вариантов, поскольку написанная по такому алгоритму программа будет выполняться слишком долго.

    Ответ: 51063 5634689219329 

    Понравилась статья? Поделить с друзьями:

    Новое и интересное на сайте:

  • 1535 результаты егэ
  • 1535 причин сдавать егэ
  • 1535 вступительные экзамены варианты
  • 1535 вступительные экзамены 7 класс математика
  • 1533 регистрация на экзамен

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии