507792 решу егэ

Решите неравенство  дробь: числитель: 1, знаменатель: 6x в квадрате минус 5x конец дроби больше или равно дробь: числитель: 1, знаменатель: корень из 6x в квадрате минус 5x плюс 1 минус 1 конец дроби .

Спрятать решение

Решение.

Пусть a= корень из 6x в квадрате минус 5x плюс 1. Получаем систему неравенств:

 система выражений  новая строка дробь: числитель: 1, знаменатель: a в квадрате минус 1 конец дроби больше или равно дробь: числитель: 1, знаменатель: a минус 1 конец дроби , новая строка ageqslant0 конец системы равносильно система выражений  новая строка дробь: числитель: a, знаменатель: a в квадрате минус 1 конец дроби меньше или равно 0, новая строка a больше или равно 0 конец системы равносильно 0 меньше или равно a меньше 1.

Следовательно:

 система выражений  новая строка 6x в квадрате минус 5x плюс 1 меньше 1, новая строка 6x в квадрате минус 5x плюс 1geqslant0 конец системы равносильно система выражений  новая строка x левая круглая скобка 6x минус 5 правая круглая скобка меньше 0, новая строка левая круглая скобка 2x минус 1 правая круглая скобка левая круглая скобка 3x минус 1 правая круглая скобка geqslant0 конец системы равносильно совокупность выражений  новая строка 0 меньше x меньше или равно дробь: числитель: 1, знаменатель: 3 конец дроби , новая строка дробь: числитель: 1, знаменатель: 2 конец дроби меньше или равно x меньше дробь: числитель: 5, знаменатель: 6 конец дроби . конец совокупности

Таким образом, решением исходного неравенства является множество  левая круглая скобка 0; дробь: числитель: 1, знаменатель: 3 конец дроби правая квадратная скобка cup левая квадратная скобка дробь: числитель: 1, знаменатель: 2 конец дроби ; дробь: числитель: 5, знаменатель: 6 конец дроби правая круглая скобка .

Ответ:  левая круглая скобка 0; дробь: числитель: 1, знаменатель: 3 конец дроби правая квадратная скобка cup левая квадратная скобка дробь: числитель: 1, знаменатель: 2 конец дроби ; дробь: числитель: 5, знаменатель: 6 конец дроби правая круглая скобка .

Спрятать критерии

Критерии проверки:

Критерии оценивания выполнения задания Баллы
Обоснованно получен верный ответ 2
Обоснованно получен ответ, отличающийся от верного исключением точек,

ИЛИ

получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения

1
Решение не соответствует ни одному из критериев, перечисленных выше. 0
Максимальный балл 2

imelmedese

imelmedese

Вопрос по математике:

Решите:507792:596+870*584

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

xtili920

xtili920

507792:596+870*584= 508932
1)507792:596 = 852
2)870*584 = 508080
3) 852+508080 = 508932

Знаете ответ? Поделитесь им!

Гость

Гость ?

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете
    правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не
    побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и
    пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся
    уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
    знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к
    пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи —
смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

В треугольнике ABC известно, что AC=BC, высота AH=6√6, BH=3. Найдите cos∠BAC.

Найдите объём многогранника, вершинами которого являются вершины B,C,A₁,C₁ правильной треугольной призмы ABCA₁B₁C₁, площадь основания которой равна 5, а боковое ребро равно 6.

В группе туристов 25 человек. Их вертолётом доставляют в труднодоступный район, перевозя по 5 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист Н. полетит вторым рейсом вертолёта.

Игральную кость бросают до тех пор, пока сумма всех выпавших очков не превысит число 5. Какова вероятность, что для этого потребовалось два броска? Ответ округлите до сотых.

Найдите корень уравнения (left(dfrac14right)^{x+2}=256^x)

Найдите значение выражения (log_{2{,}5}6cdotlog_60{,}4)

На рисунке изображен график функции y=f(x), определенной на интервале (-1;13). Найдите количество точек, в которых касательная к графику функции y=f(x) параллельна прямой y=-2.

картинка

Высота над землей подброшенного вверх мяча меняется по закону (h(t)=1{,}4+11t-5t^2), где (h) – высота в метрах, (t) – время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее 7 метров?

Смешав 8-процентный и 26-процентный растворы кислоты и добавив 10 кг чистой воды, получили 16‐процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 20-процентный раствор кислоты. Сколько килограммов 8-процентного раствора использовали для получения смеси?

На рисунке изображены графики функций (f(x)=asqrt{x}) и (g(x)=kx+b), которые пересекаются в точке (A(x_0;y_0)). Найдите (y_0)

картинка

Найдите точку максимума функции (y=(2x-1)cos x-2sin x+9) принадлежащую промежутку (left(0;dfrac{pi}{2}right)).

а) Решите уравнение (log^2_2(4x^2)+3log_{0{,}5}(8x)=1)
б) Найдите все корни этого уравнения, принадлежащие отрезку ([0{,}15;1{,}5])

Сторона основания правильной четырехугольной пирамиды SABCD относится к боковому ребру как 1:√2. Через вершину D проведена плоскость α, перпендикулярная боковому ребру SB и пересекающая его в точке M.
а) Докажите, что M – середина SB.
б) Найдите расстояние между прямыми AC и DM, если высота пирамиды равна 6√3.

Решите неравенство (dfrac{sqrt{x+4}left(8-3^{2+x^2}right)}{4^{x-1}-3}leqslant0)

15 июня 2025 года Сергей Данилович планирует взять кредит в банке на 4 года в размере целого числа миллионов рублей. Условия его возврата таковы:
– в январе каждого года действия кредита долг увеличивается на 15% от суммы долга на конец предыдущего года;
– в период с февраля по июнь в каждый из 2026 и 2027 годов необходимо выплатить только начисленные в январе проценты по кредиту;
– в период с февраля по июнь в каждый из 2028 и 2029 годов выплачиваются равные суммы, причем последний платеж должен погасить долг по кредиту полностью.
Найдите наименьший размер кредита, при котором общая сумма выплат по кредиту превысит 12 млн рублей. В ответ запишите количество миллионов.

Окружность с центром в точке C касается гипотенузы AB прямоугольного треугольника ABC и пересекает его катеты AC и BC в точках E и F. Точка D – основание высоты, опущенной из вершины C. I и J – центры окружностей, вписанных в треугольники BCD и ACD.
а) Докажите, что I и J лежат на отрезке EF.
б) Найдите расстояние от точки C до прямой IJ, если AC=15, BC=20.

Найдите все значения (a), при каждом из которых оба уравнения (a+dfrac{x}2=|x|) и (asqrt2+x=sqrt{2asqrt2x-x^2+12}) имеют ровно 2 различных корня, и строго между корнями каждого из уравнений лежит корень другого уравнения.

Трёхзначное число, меньшее 910, поделили на сумму его цифр и получили натуральное число n.
а) Может ли n равняться 68?
б) Может ли n равняться 86?
в) Какое наибольшее значение может принимать n, если все цифры ненулевые?

Введите ответ в форме строки «да;да;1234». Где ответы на пункты разделены «;», и первые два ответа с маленькой буквы.

508780 решу егэ математика

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

—>

Задание 14 № 508380

Воспользуемся тем, что для суммы возможны четыре случая раскрытия модулей, откуда заключаем:

Приведем другое решение:

Как и в первом решении запишем неравенство в виде:

Заметим, что левая часть представляет из себя кусочно-линейную функцию, которая возрастает при и убывает при Это означает, что в точке –3 она достигает минимума равного 5. Таким образом, правая часть Тогда неравенство принимает вид:

Задание 14 № 508380

—>

508780 решу егэ математика.

Ege. sdamgia. ru

07.03.2017 0:00:13

2017-03-07 00:00:13

Источники:

Https://ege. sdamgia. ru/problem? id=508380

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 508780 решу егэ математика

508780 решу егэ математика

508780 решу егэ математика

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

—>

Задание 10 № 508781

Симметричную монету бросают 11 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4~орла»?

Задание 10 № 508782

Симметричную монету бросают 12 раз. Во сколько раз вероятность события «выпадет ровно 4 орла» меньше вероятности события «выпадет ровно 5~орлов»?

Задание 10 № 508783

Симметричную монету бросают 8 раз. Во сколько раз вероятность события «выпало ровно 4 орла» больше вероятности события «выпадет ровно 3~орла»?

Задание 10 № 508784

Симметричную монету бросают 9 раз. Во сколько раз вероятность события «выпадет ровно 4 орла» больше вероятности события «выпадет ровно 3~орла»?

Задание 10 № 508785

Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 4 орла» больше вероятности события «выпадет ровно 3~орла»?

Задание 10 № 508786

Симметричную монету бросают 16 раз. Во сколько раз вероятность события «выпадет ровно 8 орлов» больше вероятности события «выпадет ровно 7~орлов»?

Задание 10 № 508787

Симметричную монету бросают 17 раз. Во сколько раз вероятность события «выпадет ровно 8 орлов» больше вероятности события «выпадет ровно 7~орлов»?

Задание 10 № 508788

Симметричную монету бросают 20 раз. Во сколько раз вероятность события «выпадет ровно 10 орлов» больше вероятности события «выпадет ровно 9~орлов»?

Задание 10 № 508789

Симметричную монету бросают 21 раз. Во сколько раз вероятность события «выпадет ровно 10 орлов» больше вероятности события «выпадет ровно 9~орлов»?

Задание 10 № 508790

Симметричную монету бросают 22 раза. Во сколько раз вероятность события «выпадет ровно 10 орлов» больше вероятности события «выпадет ровно 9~орлов»?

Задание 10 № 508786

Задание 10 № 508781

Задание 10 508786.

Ege. sdamgia. ru

14.05.2019 20:28:53

2019-05-14 20:28:53

Источники:

Https://ege. sdamgia. ru/test? likes=508780

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 508780 решу егэ математика

508780 решу егэ математика

508780 решу егэ математика

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

—>

Задание 10 № 508780

Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?

Воспользуемся формулой Бернулли. Найдем вероятность события А, состоящего в том, что при десяти бросаниях выпадет ровно 5 орлов:

Аналогично найдем вероятность события B, состоящего в том, что при десяти бросаниях выпадет ровно 4 орла:

Приведем решение Ирины Шраго.

Вероятность того, что выпадет ровно 5 орлов, равна отношению количества вариантов, при которых выпадает ровно 5 орлов, к общему количеству вариантов: Вероятность того, что выпадет ровно 4 орла, равна отношению количества вариантов, при которых выпадает ровно 4 орла, к общему количеству вариантов: Тогда отношение этих вероятностей

—>

Задание 10 № 508780

Уско рен ная под го тов ка к ЕГЭ с ре пе ти то ра ми Учи.

Ege. sdamgia. ru

09.08.2017 16:57:34

2017-08-09 16:57:34

Источники:

Https://ege. sdamgia. ru/problem? id=508780

Skip to content

ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами.

ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами.admin2022-08-27T23:17:48+03:00

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • 502106 решу егэ математика
  • 502094 решу егэ математика профиль
  • 502027 решу егэ математика
  • 502016 решу егэ
  • 501705 решу егэ математика

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии