Десятичные приставки
Наименование | Обозначение | Множитель |
гига | Г | 109 |
мега | М | 106 |
кило | к | 103 |
деци | д | 10–1 |
санти | с | 10–2 |
милли | м | 10–3 |
микро | мк | 10–6 |
нано | н | 10–9 |
пико | п | 10–12 |
Физические постоянные (константы)
число π | π = 3,14 |
ускорение свободного падения | g = 10 м/с2 |
гравитационная постоянная | G = 6,7·10–11 Н·м2/кг2 |
газовая постоянная | R = 8,31 Дж/(моль·К) |
постоянная Больцмана | k = 1,38·10–23 Дж/К |
постоянная Авогадро | NA = 6,02·1023 1/моль |
скорость света в вакууме | с = 3·108 м/с |
коэффициент пропорциональности в законе Кулона | k = 1/(4πε0) = 9·109 Н·м2/Кл2 |
модуль заряд электрона | e = 1,6·10-19 Кл |
масса электрона | me = 9,1·10–31 кг |
масса протона | mp = 1,67·10–27 кг |
постоянная Планка | h = 6,62·10-34 Дж·с |
радиус Солнца | 6,96·108 м |
температура поверхности Солнца | T = 6000 K |
радиус Земли | 6370 км |
Соотношение между различными единицами измерения
температура | 0 К = –273 0С |
атомная единица массы | 1 а.е.м. = 1,66·10–27 кг |
1 атомная единица массы эквивалентна | 931,5 МэВ |
1 электронвольт | 1 эВ = 1,6·10-19 Дж |
1 астрономическая единица | 1 а.е. ≈ 150 000 000 км |
1 световой год | 1 св. год ≈ 9,46·1015 м |
1 парсек | 1 пк ≈ 3,26 св. года |
Масса частиц
электрона | 9,1·10–31кг ≈ 5,5·10–4 а.е.м. |
протона | 1,673·10–27 кг ≈ 1,007 а.е.м. |
нейтрона | 1,675·10–27 кг ≈ 1,008 а.е.м. |
Плотность
воды | 1000 кг/м3 |
древесины (сосна) | 400 кг/м3 |
керосина | 800 кг/м3 |
подсолнечного масла | 900 кг/м3 |
алюминия | 2700 кг/м3 |
железа | 7800 кг/м3 |
ртути | 13 600 кг/м3 |
Удельная теплоёмкость
воды | 4,2·10 3 Дж/(кг·К) |
льда | 2,1·10 3 Дж/(кг·К) |
железа | 460 Дж/(кг·К) |
свинца | 130 Дж/(кг·К) |
алюминия | 900 Дж/(кг·К) |
меди | 380 Дж/(кг·К) |
чугуна | 500 Дж/(кг·К) |
Удельная теплота
парообразования воды | 2,3·10 6 Дж/кг |
плавления свинца | 2,5·10 4 Дж/кг |
плавления льда | 3,3·10 5 Дж/кг |
Нормальные условия:
давление | 105 Па |
температура | 00 C |
Молярная маcса молекул
азота | 28·10–3 кг/моль |
аргона | 40·10–3 кг/моль |
водорода | 2·10–3 кг/моль |
воздуха | 29·10–3 кг/моль |
воды | 18·10–3 кг/моль |
гелия | 4·10–3 кг/моль |
кислорода | 32·10–3 кг/моль |
лития | 6·10–3 кг/моль |
неона | 20·10–3 кг/моль |
углекислого газа | 44·10–3 кг/моль |
Молекулярная физика
Молекулярная физика описывает строение вещества с помощью молекулярно-кинетической теории.
Согласно молекулярно-кинетической теории (МКТ), все тела состоят из отдельных частиц — молекул и атомов, то есть не являются сплошными.
Основные положения молекулярно-кинетической теории строения вещества заключаются в следующем:
- вещество состоит из частиц (атомов и молекул);
- эти частицы беспорядочно движутся;
- частицы взаимодействуют друг с другом.
Атом — это наименьшая часть химического элемента, обладающая его свойствами и способная к самостоятельному существованию.
Каждому элементу соответствует определенный род атомов, обозначаемый химическим символом этого элемента. Например, атом кислорода обозначается символом $О$, водорода — $Н$, гелия — $Не$ и т. д.
Атомы могут существовать в свободном состоянии (в виде отдельных атомов) в газах. В жидкостях и твердых телах они существуют в виде молекул, в которых соединяются с атомами того же элемента или других химических элементов (или, как принято говорить, существуют в связанном состоянии).
Молекула — мельчайшая устойчивая частица вещества, состоящая из атомов одного или нескольких химических элементов, сохраняющая основные химические свойства этого вещества. Атомы можно рассматривать как одноатомные молекулы.
Размеры молекул
Для определения размеров молекул проводились различные опыты. Вот один из них.
В сосуд с водой помещают каплю масла, объем которой определяется заранее. (Объем капли $V$ определяют с помощью мензурки, в которую при помощи пипетки капают несколько десятков капель масла, и измеряют их общий объем. Этот объем делят на количество капель). Масло начинает растекаться по поверхности воды, образуя тонкую пленку. После прекращения растекания пленки определяют ее площадь $S$. Если предположить, что образовалась пленка толщиной в одну молекулу (из-за чего и прекратилось растекание масла), то толщина пленки $h$ будет равна диаметру молекулы. Толщина пленки равна отношению ее объема к площади:
$h={V}/{S}$
Полученное в этом опыте численное значение толщины составляло $0.00000016$ см, или $1.6·10^{-7}$ см. Этим числом выражается примерный размер молекул (размеры атомов составляют около $10^{-8}$ см).
Поскольку молекулы очень малы, в каждом физическом теле их содержится огромное количество. Так, в $1см^3$ воздуха содержится около $27·10^{18}$ молекул. Чтобы понять, насколько велико это число, представим себе, что через маленькое отверстие пропускают по миллиону молекул в секунду, тогда указанное количество молекул пройдет через отверстие за $840 000$ лет.
Масса молекул
Масса молекул (за исключением молекул органических веществ, например, белков) очень мала. Так, масса молекулы воды составляет около $2.7·10^{-23}$ г. Работать с такими малыми цифрами неудобно, поэтому в физике и химии принято выражать массы атомов и молекул в относительных единицах.
Атомная единица массы
Атомная единица массы (а.е.м.) — единица массы, равная ${1}/{12}$ массы атома изотопа углерода $12^С$:
$1a.e.м.=1.66·10^{-27}кг$
Чтобы перевести значение массы атомов или молекул, выраженной в $а.е.м.$, т. е. относительную молекулярную (или атомную) массу вещества $М_r$, в единицу массы СИ (кг), пользуются формулой:
$m(кг)={M_{r}·10^{-3}[моль^{-1}·кг]}/{N_{A}·[моль^{-1}]}$
где $N_А$ — постоянная Авогадро.
Атомная масса (относительная молекулярная масса)
Относительная молекулярная масса (атомная масса) — относительное значение массы молекулы (атома), выраженное в атомных единицах массы:
$M_r={m_0}/{{1}/{12}m_{0C}}(M_r={m_0}/{1a.e.м.})$
где $M_r$ — относительная молекулярная (атомная) масса; $m_0$ — масса молекулы (атома), выраженная в единицах СИ (кг); $m_{0C}$ — масса молекулы изотопа углерода ${12}^С$, выраженная в тех же единицах, что и $m_0$.
${1}/{12}m_{0C}=1a.e.м.=1.66·10^{-27}кг$
Атомная масса была взята Д. И. Менделеевым за основную характеристику элемента при открытии им периодической системы элементов. Атомная масса — дробная величина, в отличие от массового числа — количества нуклонов в атоме.
Относительная молекулярная масса вещества складывается из относительных атомных масс (а.м.) входящих в молекулу элементов. Например: $M_r(H_2O)=2·1+16=18; M_r(CO_2)=12+2·16=44$.
Атомные массы всех химических элементов точно измерены.
Моль. Постоянная Авогадро
Моль — количество вещества, масса которого, выраженная в граммах, численно равна относительной атомной (молекулярной) массе.
Моль — единица количества вещества в СИ (одна из основных единиц СИ).
В $1$ моле содержится столько молекул (атомов или других частиц вещества), сколько атомов содержится в $0.012$ кг нуклида углерода ${12}^С$ с атомной массой $12$.
Из этого определения следует, что в одном моле любого вещества содержится одно и то же число атомов или молекул.
Число это называется постоянной Авогадро и обозначается $N_А$:
$N_A=6.022054(32)·10^{23}моль^{-1}$
Постоянная Авогадро (число Авогадро) — это число атомов (молекул или других структурных элементов вещества), содержащихся в $1$ моле.
Постоянная Авогадро — одна из фундаментальных физических констант. Она входит в некоторые другие постоянные, например, в постоянную Больцмана.
Количество вещества
Количество вещества — это число частиц вещества (атомов, молекул), выраженное в молях. Учитывая определение моля и числа Авогадро, можно сказать, что количество вещества $v$ равно отношению числа молекул $N$ в данном теле к постоянной Авогадро $N_А$, т. е. к числу молекул в $1$ моле вещества:
$v={N}/{N_A}$
Молярная масса
Молярной массой вещества $М$ называют массу вещества, взятого в количестве $1$ моль:
$M=m_{0}N_A$
где $m_0$ — масса молекулы данного вещества.
Поскольку для любого тела его масса т связана с количеством молекул $N$ в нем соотношением
$m=m_{0}N$
то из $v={N}/{N_A}$, $M=m_{0}N_A$ и $m=m_{0}N$ получим:
$v={m}/{M}$
Количество вещества равно отношению массы вещества к его молярной массе.
Из $v={m}/{M}$ и $v={N}/{N_A}$ получаем выражение для числа молекул в теле с массой $m$ и молярной массой $М$.
$N=N_{A}·v=N_{A}·{m}/{M}$
Модели строения газов, жидкостей и твердых тел
Газ
Французское слово gaz (газ) произошло от греческого слова «хаос», что означает «полный беспорядок», «неразбериха» (в древнегреческой мифологии хаос — зияющая бездна, наполненная туманом и мраком, якобы существовавшая до сотворения мира).
Термин «газ» был введен в начале XVII в. Я. Б. ван Бельмонтом. Действительно, модель молекулярного хаоса оказалась весьма плодотворной и сохранила свое значение для современных исследований.
Газ — это агрегатное состояние вещества, в котором составляющие его атомы и молекулы почти свободно и хаотически движутся в промежутках между столкновениями. Во время столкновения молекулы резко меняют скорость и направление своего движения. Время столкновения молекул намного меньше промежутка времени между двумя столкновениями.
Объем, занимаемый газом, значительно сильнее зависит от давления и температуры, чем объем жидкостей и твердых тел.
Газ можно сжать так, что его объем уменьшится в несколько раз. Это значит, что расстояние между молекулами $l$ намного больше размеров самих молекул: $l >> d$. На таких расстояниях молекулы очень слабо притягиваются друг к другу. По этой причине газы не имеют собственной формы и постоянного объема. Нельзя заполнить газом, например, половину бутылки или стакана.
В отличие от жидкостей и твердых тел газы не образуют свободной поверхности и заполняют весь доступный им объем.
Газообразное состояние — самое распространенное состояние вещества Вселенной (межзвездное вещество, туманности, звезды, атмосферы планет). По химическим свойствам газы и их смеси очень разнообразны — от малоактивных инертных газов до взрывчатых смесей.
Давление газа. Беспрерывно и хаотически двигаясь, молекулы газа сталкиваются не только друг с другом, но и со стенками сосуда, в котором находится газ. Молекул в газе много, потому и число их ударов очень велико. Например, число ударов молекул воздуха, находящегося в комнате, о поверхность площадью $1см^2$ за $1с$, выражается двадцатитрехзначным числом. Хотя сила удара одной молекулы мала, но действие всех молекул на стенки сосуда значительно, оно и составляет давление газа.
Итак, давление газа на стенки сосуда и на помещенное в газ тело вызывается ударами молекул газа.
Жидкость
Жидкость — вещество в состоянии, промежуточном между твердым и газообразным. Это агрегатное состояние вещества, в котором молекулы (или атомы) связаны между собой настолько, что это позволяет ему сохранять свой объем, но недостаточно сильно, чтобы сохранять и форму.
Свойства жидкостей. Жидкости легко меняют свою форму, но сохраняют объем. В обычных условиях они принимают форму сосуда, в котором находятся.
Поверхность жидкости, не соприкасающаяся со стенками сосуда, называется свободной поверхностью. Она образуется в результате действия силы тяжести на молекулы жидкости.
Строение жидкостей. Свойства жидкостей объясняются тем, что промежутки между их молекулами малы: молекулы в жидкостях упакованы так плотно, что расстояние между каждыми двумя молекулами меньше размеров молекул. Объяснение поведения жидкостей на основе характера молекулярного движения жидкости было дано советским ученым Я. И. Френкелем. Оно заключается в следующем. Молекула жидкости колеблется около положения временного равновесия, сталкиваясь с другими молекулами из ближайшего окружения. Время от времени ей удается совершить «прыжок», чтобы покинуть своих соседей из ближайшего окружения и продолжать совершать колебания уже среди других соседей. Время оседлой жизни молекулы воды, т. е. время колебания около одного положения равновесия при комнатной температуре, равно в среднем $10^{-11}$ с. Время одного колебания значительно меньше — $10^{-12}—10^{-13}$с.
Поскольку расстояния между молекулами жидкости малы, то попытка уменьшить объем жидкости приводит к деформации молекул, они начинают отталкиваться друг от друга, чем и объясняется малая сжимаемость жидкости. Текучесть жидкости объясняется тем, что «прыжки» молекул из одного оседлого положения в другое происходят по всем направлениям с одинаковой частотой. Внешняя сила не меняет заметным образом число «прыжков» в секунду, она лишь задает их преимущественное направление, чем и объясняется текучесть жидкости и то, что она принимает форму сосуда.
Твердое тело. Кристаллические и аморфные тела
Твердое тело — агрегатное состояние вещества, характеризующееся постоянством формы и характером движения атомов, которые совершают малые колебания около положений равновесия.
Кристаллические тела. Твердое тело в обычных условиях трудно сжать или растянуть. Для придания твердым телам нужной формы или объема на заводах и фабриках их обрабатывают на специальных станках: токарных, строгальных, шлифовальных.
В отсутствие внешних воздействий твердое тело сохраняет свою форму и объем.
Это объясняется тем, что притяжение между атомами (или молекулами) у них больше, чем у жидкостей (и тем более газов). Оно достаточно, чтобы удержать атомы около положений равновесия.
Молекулы или атомы большинства твердых тел, таких, как лед, соль, алмаз, металлы, расположены в определенном порядке. Такие твердые тела называют кристаллическими. Хотя частицы этих тел и находятся в движении, движения эти представляют собой колебания около определенных точек (положений равновесия). Частицы не могут уйти далеко от этих точек, поэтому твердое тело сохраняет свою форму и объем.
Кроме того, в отличие от жидкостей, точки положений равновесия атомов или ионов твердого тела, будучи соединенными, располагаются в вершинах правильной пространственной решетки, которая называется кристаллической.
Положения равновесия, относительно которых происходят тепловые колебания частиц, называются узлами кристаллической решетки.
Монокристалл — твердое тело, частицы которого образуют единую кристаллическую решетку (одиночный кристалл).
Анизотропия монокристаллов. Одним из главных свойств монокристаллов, которым они отличаются от жидкостей и газов, является анизотропия их физических свойств. Под анизотропией понимают зависимость физических свойств от направления в кристалле. Анизотропными являются механические свойства (например, известно, что слюду легко расслоить в одном направлении и очень трудно — в перпендикулярном), электрические свойства (электропроводность многих кристаллов зависит от направления), оптические свойства (явление двойного лучепреломления, и дихроизма — анизотропии поглощения; так, например, монокристалл турмалина «окрашен» в разные цвета — зеленый и бурый, в зависимости от того, с какой стороны на него посмотреть).
Поликристалл — твердое тело, состоящее из беспорядочно ориентированных монокристаллов. Поликристаллическими являются большинство твердых тел, с которыми мы имеем дело в быту — соль, сахар, различные металлические изделия. Беспорядочная ориентация сросшихся микрокристалликов, из которых они состоят, приводит к исчезновению анизотропии свойств.
Аморфные тела. Кроме кристаллических, к твердым телам относят также аморфные тела. Аморфный в переводе с греческого означает «бесформенный».
Аморфные тела — это твердые тела, для которых характерно неупорядоченное расположение частиц в пространстве.
В этих телах молекулы (или атомы) колеблются около хаотически расположенных точек и, подобно молекулам жидкости, имеют определенное время оседлой жизни. Но, в отличие от жидкостей, время это у них очень велико.
К аморфным телам относятся стекло, янтарь, различные другие смолы, пластмассы. Хотя при комнатной температуре эти тела сохраняют свою форму, но при повышении температуры они постепенно размягчаются и начинают течь, как жидкости: у аморфных тел нет определенной температуры плавления.
Этим они отличаются от кристаллических тел, которые при повышении температуры переходят в жидкое состояние не постепенно, а скачком (при вполне определенной температуре — температуре плавления).
Все аморфные тела изотропны, т. е. имеют одинаковые физические свойства по разным направлениям. При ударе они ведут себя как твердые тела — раскалываются, а при очень длительном воздействии — текут.
В настоящее время есть много веществ в аморфном состоянии, полученных искусственным путем, например, аморфные и стеклообразные полупроводники, магнитные материалы и даже металлы.
Основные формулы молекулярной физики
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
В кодификаторе ЕГЭ нет тем, непосредственно относящихся к содержанию данного листка. Однако без этого вводного материала дальнейшее изучение молекулярной физики невозможно.
Введём основные величины молекулярной физики и соотношения между ними.
— масса вещества,
— объём вещества,
— плотность вещества (масса единицы объёма). Отсюда
— число частиц вещества (атомов или молекул).
— масса частицы вещества. Тогда
— концентрация вещества (число частиц в единице объёма),
. Отсюда
Что получится, если умножить на
? Произведение массы частицы на число частиц в единице объёма даст массу единицы объёма, т. е. плотность. Формально:
Итак,
Массы и размеры частиц невообразимо малы по нашим обычным меркам. Например, масса атома водорода порядка г, размер атома порядка
см. Из-за столь малых значений масс и размеров число частиц в макроскопическом теле огромно.
Оперировать столь грандиозными числами, как число частиц, неудобно. Поэтому для измерения количества вещества используют специальную единицу — моль.
Один моль — это количество вещества, в котором содержится столько же атомов или молекул, сколько атомов содержится в граммах углерода. А в
граммах углерода содержится примерно
атомов. Стало быть, в одном моле вещества содержится
частиц. Это число называется постоянной Авогадро:
моль
.
Количество вещества обозначается . Это число молей данного вещества.
Что получится, если умножить на
? Число молей, умноженное на число частиц в моле, даст общее число частиц:
Масса одного моля вещества называется молярной массой этого вещества и обозначается (
= кг/моль). Ясно, что
Как найти молярную массу химического элемента? Оказывается, для этого достаточно заглянуть в таблицу Менделеева! Нужно просто взять атомную массу (число нуклонов) данного элемента — это будет его молярная масса, выраженная в г/моль. Например, для алюминия
, поэтому молярная масса алюминия равна
г/моль или
кг/моль.
Почему так получается? Очень просто. Молярная масса углерода равна г/моль по определению. В то же время ядро атома углерода содержит
нуклонов. Выходит, что каждый нуклон вносит в молярную массу
г/моль. Поэтому молярная масса химического элемента с атомной массой
оказывается равной
г/моль.
Молярная масса вещества, молекула которого состоит из нескольких атомов, получается простым суммированием молярных масс. Так, молярная масса углекислого газа равна
г/моль
кг/моль.
Будьте внимательны с молярными массами некоторых газов! Так, молярная масса газообразного водорода равна г/моль, поскольку его молекула состоит из двух атомов
. То же касается часто встречающихся в задачах азота и кислорода
Вместе с тем, наиболее частый персонаж задач — гелий
— является одноатомным газом и имеет молярную массу
г/моль, предписанную таблицей Менделеева.
Ещё раз предостережение: при расчётах не забывайте переводить молярную массу в кг/моль! Если ваш ответ отличается от правильного на три порядка, то вы наверняка сделали именно эту, очень распространённую ошибку
Что получится, если умножить на
? Масса частицы, умноженная на число частиц в моле, даст массу моля, т. е. молярную массу:
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Основные формулы молекулярной физики» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Количество вещества .
Количество вещества измеряется в молях.
В одном моле любого вещества содержится (6,02 cdot 10^{23} )
частиц (молекул или атомов )
( nu= dfrac{N}{N_А} )
( nu ) — Количество вещества [моль]
( N ) — общее число частиц (молекул или атомов)
( N_А=6,02 cdot 10^{23} dfrac{1}{моль} ) — число Авогадро
( nu= dfrac{m}{M} )
(m) -масса
(M)- молярная масса
Молярная масса — это масса одного моля вещества
Молярную массу можно узнать из таблицы Менделеева
Для этого нужно атомную массу разделить на 1000
Задача 1.
Какое количество вещества ( ; nu ) содержится в стакане , если число молекул воды
в этом стакане ( N=12,04 cdot 10^{23} )
Число Авогадро ( N_А=6,02 cdot 10^{23} dfrac{1}{моль} )
Показать ответ
Показать решение
Видеорешение
Репетитор по физике и математике
8 916 478 10 32
Пройти первый тест на эту тему (5 задач)
Задача 2.
Какое количество вещества ( ; nu ) содержится в стальном предмете , если число атомов
в этом предмете ( N=3,01 cdot 10^{23} )
Число Авогадро ( N_А=6,02 cdot 10^{23} dfrac{1}{моль} )
Показать ответ
Показать решение
Видеорешение
Задача 3.
Какое количество молекул содержится в ( ; nu=0,00001 ) молях воды?
Число Авогадро ( N_А=6,02 cdot 10^{23} dfrac{1}{моль} )
Показать ответ
Показать решение
Видеорешение
Задача 4.
Какое количество атомов содержится в ( ; nu=10^{-20} ) молях гелия?
Число Авогадро ( N_А=6,02 cdot 10^{23} dfrac{1}{моль} )
Показать ответ
Показать решение
Видеорешение
Пройти второй тест на эту тему
Задача 5.
Какое количество вещества содержится в воде массой (m=0,036 кг )?
Молярная масса воды (M=0,018 dfrac{кг}{моль} )
Показать ответ
Показать решение
Видеорешение
Задача 6.
Найти количество вещества, содержащееся в 44 граммах углекислого газа.
Молярная масса углекислого газа (M=0,044 dfrac{кг}{моль} )
Показать ответ
Показать решение
Видеорешение
Задача 7.
Какую массу имеет 1 моль воды?
Молярная масса воды (M=0,018 dfrac{кг}{моль} )
Показать ответ
Показать решение
Видеорешение
Задача 8.
Вычислить массу 100 моль воздуха
Молярная масса воздуха (M=0,029 dfrac{кг}{моль} )
Показать ответ
Показать решение
Видеорешение
Задача 9.
Сколько атомов содержится в алюминиевой кастрюле массой (m=1 ) килограмм
Молярная масса алюминия (M=0,027 dfrac{кг}{моль} )
Число Авогадро ( N_А=6,02 cdot 10^{23} dfrac{1}{моль} )
Показать ответ
Показать решение
Видеорешение
Задача 10.
Сколько молекул содержится в капле воды массой (m=0,05 ) грамм
Молярная масса воды (M=0,018 dfrac{кг}{моль} )
Число Авогадро ( N_А=6,02 cdot 10^{23} dfrac{1}{моль} )
Показать ответ
Показать решение
Видеорешение
Пройти третий тест на эту тему
Задача 11.
Найти массу молекулярного азота, если в нем содержится (N= 10^{23}) молекул
Молярная масса молекулярного азота (M=28 dfrac{г}{моль} )
Число Авогадро ( N_А=6,02 cdot 10^{23} dfrac{1}{моль} )
Ответ дать в граммах.
Показать ответ
Показать решение
Видеорешение
Задача 12.
Найти массу углерода, если в нем содержится (N= 10^{22}) атомов
Молярная масса углерода (M=12 dfrac{г}{моль} )
Число Авогадро ( N_А=6,02 cdot 10^{23} dfrac{1}{моль} )
Ответ дать в граммах.
Ответ округлить до целого числа грамм.
Показать ответ
Показать решение
Видеорешение
Задача 13.
Найти массу алюминиевой детали, если в ней содержится (N= 10^{25}) атомов,
а масса атома алюминия (m_0=44,8 cdot 10^{-27} кг )
Показать ответ
Показать решение
Видеорешение
Задача 14.
Найти массу серебрянного украшения, если количество атомов в нем (N= 10^{23}) ,
а масса атома серебра ( m_0 =1,794 cdot 10^{-25} кг )
Дать ответ в граммах.
Показать ответ
Показать решение
Видеорешение
Задача 16.
Найти массу атома серебра, если молярная масса серебра (M=0,108 dfrac{кг}{моль} )
Число Авогадро ( N_А=6,02 cdot 10^{23} dfrac{1}{моль} )
Показать ответ
Показать решение
Видеорешение
Решение задач на количество вещества,
массу и объем
Ключевые слова: решение задач на количество вещества, решение задач по химии на массу и объем, какое количества вещества содержится, какое число молекул содержится, определите объем (н.у.), определите массу, какова масса порции, определите молярную массу, назовите вещество, найдите молярную массу, определите абсолютную массу молекулы, сколько атомов содержится, определите относительную плотность.
ФОРМУЛЫ ДЛЯ РЕШЕНИЯ ЗАДАЧ
Количество вещества характеризует число структурных единиц (атомов, молекул, ионов), которое содержится в определенном образце данного вещества. Единицей измерения количества вещества является моль. Количество вещества (ν) связано с числом структурных единиц (N) в образце вещества, его массой (m) и объемом (V) — для газообразных веществ при н. у. — следующими уравнениями:
в которых
Vm = 22,4 л/моль (мл/ммоль, м3/кмоль) при н.у.,
Na = 6,02 • 1023 (постоянная Авогадро),
а молярная масса (М) численно равна относительной молекулярной массе вещества:
Наличие подобной взаимосвязи позволяет, зная одну из величин (количество вещества, массу, объем, число структурных величин) определить все другие величины.
РЕШЕНИЯ ПРОСТЫХ ЗАДАЧ
Задача № 1.
Какое количество вещества содержится в 33 г оксида углерода (IV)?
Ответ: ν(СО2) = 0,75 моль.
Задача № 2.
Какое число молекул содержится в 2,5 моль кислорода?
Ответ: N(O2) = 1,505 • 1024.
Задача № 3.
Определите объем (н. у.), который займут 0,25 моль водорода.
Задача № 4.
Какую массу будет иметь порция оксида серы (IV), объем которой 13,44 л (н. у.)?
Задача № 5.
Имеется 3 моль кислорода О2 при н.у. Определите массу кислорода, его объем, а также число имеющихся молекул кислорода.
Ответ: m = 96 г; V = 67.2 л; N(O2) = 1,81 • 1024.
Задача № 6.
Имеется 10 г водорода Н2. Определите количество водорода, его объем при н.у., а также число имеющихся молекул водорода.
Ответ: 5 моль; 112 л; 3,01 • 1024.
Задача № 7.
Имеется 56 л хлора Сl2 при н.у. Определите количество вещества хлора, его массу и число имеющихся молекул хлора.
Ответ: 2,5 моль; 177,5 г; 1,5 • 1024.
Задача № 8.
Имеется 2,4 • 1023 молекул оксида углерода (IV) СO2. Определите количество вещества углекислого газа, его массу, а также объем (н.у.) углекислого газа.
Ответ: 0,4 моль; 17,6 г; 8,96 л.
Задача № 9.
Какова масса порции оксида азота (IV), содержащей 4,816 • 1023 молекул? Каков ее объем (н. у.)?
Задача № 10.
Масса порции простого вещества, содержащей 1,806 • 1024 молекул, равна 6 г. Определите молярную массу данного вещества и назовите его.
Внимание! В данном конспекте рассматриваются задачи обычной сложности. Чтобы перейти к конспекту решения сложных задач на количественные характеристики и задачи с кратким ответом нажмите на кнопку ниже…
Сложные задачи на количество …
Решение задач на количество вещества, массу и объем. Выберите дальнейшие действия:
- Перейти дальше: Решение задач с долей вещества в смеси, в соединении
- Вернуться к списку конспектов по Химии.
- Проверить знания по Химии.
- Взрослым: Skillbox, Geekbrains, Хекслет, Eduson, XYZ, Яндекс.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
Справочные материалы ЕГЭ по физике 2022-2023
Десятичные приставки
Наименование — Обозначение — Множитель
- гига — Г — 109
- мега — М — 106
- кило — к — 103
- гекто — г — 102
- деци — д — 10–1
- санти — с — 10–2
- милли — м — 10–3
- микро — мк — 10–6
- нано — н — 10–9
- пико — п — 10–12
Физические постоянные (константы)
- число π: π = 3,14
- ускорение свободного падения: g = 10 м/с2
- гравитационная постоянная: G = 6,7·10–11 Н·м2/кг2
- универсальная газовая постоянная: R = 8,31 Дж/(моль·К)
- постоянная Больцмана: k = 1,38·10–23 Дж/К
- постоянная Авогадро: NA = 6·1023 1/моль
- скорость света в вакууме: с = 3·108 м/с
- коэффициент пропорциональности в законе Кулона: k = 1/(4πε0) = 9·109 Н·м2/Кл2
- модуль заряд электрона (элементарный электрический заряд): e = 1,6·10−19 Кл
- постоянная Планка: h = 6,6·10-34 Дж·с
Соотношение между различными единицами измерения
- температура: 0 К = –273 0С
- атомная единица массы: 1 а.е.м. = 1,66·10–27 кг
- 1 атомная единица массы эквивалентна: 931,5 МэВ
- 1 электронвольт: 1 эВ = 1,6·10−19 Дж
Масса частиц
- электрона — 9,1·10–31 кг ≈ 5,5·10–4 а.е.м.
- протона — 1,673·10–27 кг ≈ 1,007 а.е.м.
- нейтрона — 1,675·10–27 кг ≈ 1,008 а.е.м.
Плотность
- воды — 1000 кг/м3
- древесины (сосна) — 400 кг/м3
- керосина — 800 кг/м3
- подсолнечного масла — 900 кг/м3
- алюминия — 2700 кг/м3
- железа — 7800 кг/м3
- ртути — 13 600 кг/м3
Удельная теплоёмкость
- воды — 4,2·103 Дж/(кг·К)
- льда — 2,1·103 Дж/(кг·К)
- железа — 460 Дж/(кг·К)
- свинца — 130 Дж/(кг·К)
- алюминия — 900 Дж/(кг·К)
- меди — 380 Дж/(кг·К)
- чугуна — 500 Дж/(кг·К)
Удельная теплота
- парообразования воды — 2,3·106 Дж/кг
- плавления свинца — 2,5·104 Дж/кг
- плавления льда — 3,3·105 Дж/кг
Нормальные условия
- давление: 105 Па
- температура: 0 °С
Молярная масса молекул
- азота: 28·10–3 кг/моль
- аргона: 40·10–3 кг/моль
- водорода: 2·10–3 кг/моль
- воздуха: 29·10–3 кг/моль
- воды: 18·10–3 кг/моль
- гелия: 4·10–3 кг/моль
- кислорода: 32·10–3 кг/моль
- лития: 6·10–3 кг/моль
- неона: 20·10–3 кг/моль
- углекислого газа: 44·10–3 кг/моль
- Взрослым: Skillbox, Geekbrains, Хекслет, Eduson, XYZ, Яндекс.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.