Егэ задание 506358



СДАМ ГИА:

РЕШУ ЕГЭ

Образовательный портал для подготовки к экзаменам

Математика базового уровня

Математика базового уровня

≡ Математика

Базовый уровень

Профильный уровень

Информатика

Русский язык

Английский язык

Немецкий язык

Французский язык

Испанский язык

Физика

Химия

Биология

География

Обществознание

Литература

История

Сайты, меню, вход, новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Об экзамене

Каталог заданий

Варианты

Ученику

Учителю

Школа

Справочник

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

Играть в ЕГЭ-игрушку

Новости

10 марта

Как подготовиться к ЕГЭ и ОГЭ за 45 дней

6 марта

Изменения ВПР 2023

3 марта

Разместили утвержденное расписание ЕГЭ

27 января

Вариант экзамена блокадного Ленинграда

23 января

ДДОС-атака на Решу ЕГЭ. Шантаж.

6 января

Открываем новый сервис: «папки в избранном»

22 декабря

От­кры­ли но­вый пор­тал Ре­шу Олимп. Для под­го­тов­ки к пе­реч­не­вым олим­пи­а­дам!

4 ноября

Материалы для подготовки к итоговому сочинению 2022–2023

31 октября

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

21 марта

Новый сервис: рисование

31 января

Внедрили тёмную тему!

НАШИ БОТЫ

Все новости

ЧУЖОЕ НЕ БРАТЬ!

Экзамер из Таганрога

10 апреля

Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

Наша группа

Задания

Версия для печати и копирования в MS Word

Тип 12 № 506358

В треугольнике ABC AB=BC, AC=8, tgangle BAC= дробь: числитель: корень из 5, знаменатель: 2 конец дроби . Найдите AB .

Спрятать решение

Решение.

Проведём построения, как показано на рисунке. Треугольник ABC равнобедренный, значит, высота BH делит основание AC пополам.

AB= дробь: числитель: AH, знаменатель: косинус angle BAC конец дроби = дробь: числитель: AC, знаменатель: 2 косинус angle BAC конец дроби = дробь: числитель: AC, знаменатель: 2 корень из дробь: числитель: 1, знаменатель: 1 плюс tg в квадрате BAC конец дроби конец дроби = дробь: числитель: 8, знаменатель: 2 корень из дробь: числитель: 4, знаменатель: 9 конец дроби конец дроби =6.

Ответ: 6.

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 120913.

Раздел кодификатора ФИПИ: Треугольники и их элементы

Спрятать решение

·

·

Сообщить об ошибке · Помощь

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

Из k кг материала фабрика изготавливает n одинаковых деталей массой m кг каждая, причем k=nm+q, где q кг – остатки материала, и q < m. После внедрения новых технологий на фабрике начали выпускать детали нового типа, каждая из которых стала на 0,2 кг легче детали старого типа, причем из 63 кг материала деталей нового типа стали делать на две больше, чем делали деталей старого типа из 64 кг материала.
а) Может ли новая деталь весить столько, что на изготовление 15 новых деталей будет достаточно 63 кг материала, а на 16 – уже нет?
б) Может ли новая деталь весить столько, что на изготовление 40 новых деталей будет достаточно 63 кг материала, а на 41 – уже нет?
в) Найдите такое минимальное число n, что фабрика может выпускать n новых деталей из 80 кг материала, а n-1 деталь не сможет, не нарушая условия q < m.

Введите ответ в форме строки «да;да;1;2;3;4». Где ответы на пункты разделены «;», первые два ответа с маленькой буквы, а в пункте В перечислите возможные длины стороны квадрата по возрастанию через точку с запятой.

3618 Основание прямой призмы ABCDA1B1C1D — параллелограмм АВСD, диагонали которого пересекаются в точке О. Известно, что АА1 : АВ : АD = 1 : 2 : √5. На ребре АА1 отметили такую точку М, что прямые
ОМ и BD1 перпендикулярны.
а) Докажите, что точка М — середина ребра АА1.
б) Найдите расстояние от точки М до прямой B1D1, если АВ=2 , BD=3
Решение
Основание прямой призмы ABCDA1B1C1D — параллелограмм АВСD, диагонали которого пересекаются в точке О ! Тренировочная работа №1 по математике 10 класс Статград 08-02-2023 Вариант МА2200109 Задание 13 ...X
3599 В правильной шестиугольной пирамиде SABCDEF сторона основания AB равна 2, а боковое ребро SA равно 8. Точка M — середина ребра AB. Плоскость альфа перпендикулярна плоскости ABC и содержит точки M и D. Прямая SC пересекает плоскость альфа в точке K.
а) Докажите, что KM=KD.
б) Найдите объём пирамиды CDKM
Решение
В правильной шестиугольной пирамиде SABCDEF сторона основания AB равна 2, а боковое ребро SA равно 8. Точка M — середина ребра AB ! 36 вариантов ФИПИ Ященко 2023 Вариант 21 Задание 13 ...X
3577 В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и BC=sqrt23. Длины боковых рёбер пирамиды SA = 2sqrt15, SB=sqrt85, SD=sqrt83. а) Докажите, что SA — высота пирамиды SABCD. б) Найдите угол между прямыми SC и BD
Решение
В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и BC=sqrt23 ! Тренировочная работа по математике №2 СтатГрад 11 класс 13.12.2022 Задание 13 Вариант МА2210209 #Задача-аналог   2525   ...X
3545 Грань ABCD прямоугольного параллелепипеда ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1; AB=a, AA1=sqrt2a.
а) Высота конуса равна h. Докажите, что 4,5a < h < 5a.
б) Найдите угол между плоскостями ABC и SD1C, где S — вершина конуса
Решение
Грань ABCD прямоугольного параллелепипеда ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1 ! 36 вариантов ФИПИ Ященко 2023 Вариант 10 Задание 13 ...X
3535 Грань ABCD куба ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1.
а) Высота конуса равна h, ребро куба равно a. Докажите, что 3a < h < 3,5a.
б) Найдите угол между плоскостями ABC и SA1D, где S — вершина конуса
Решение
Грань ABCD куба ABCDA1B1C1D1 является вписанной в основание конуса, а сечением конуса плоскостью A1B1C1 является круг, вписанный в четырёхугольник A1B1C1D1 ! 36 вариантов ФИПИ Ященко 2023 Вариант 9 Задание 13 ...X
3527 Сторона основания правильной четырёхугольной пирамиды SABCD относится к боковому ребру как 1 : sqrt2. Через вершину D проведена плоскость α, перпендикулярная боковому ребру SB и пересекающая его в точке M.
а) Докажите, что сечение пирамиды SABCD плоскостью альфа — это четырёхугольник, диагонали которого перпендикулярны.
б) Найдите площадь этого сечения, если боковое ребро пирамиды равно 6
Решение
Докажите, что сечение пирамиды SABCD плоскостью альфа — это четырёхугольник, диагонали которого перпендикулярны ! 36 вариантов ФИПИ Ященко 2023 Вариант 8 Задание 13 ...X
3516 Сторона основания правильной четырёхугольной пирамиды SABCD относится к боковому ребру как 1 : sqrt2. Через вершину D проведена плоскость α, перпендикулярная боковому ребру SB и пересекающая его в точке M.
а) Докажите, что M — середина SB.
б) Найдите расстояние между прямыми AC и DM, если высота пирамиды равна 6sqrt3
Решение
Сторона основания правильной четырёхугольной пирамиды SABCD относится к боковому ребру как ! 36 вариантов ФИПИ Ященко 2023 Вариант 7 Задание 13 ...X
3504 В правильную треугольную пирамиду с боковым ребром sqrt13 и стороной основания 6 вписан шар. Плоскость α перпендикулярна высоте пирамиды и проходит через её середину.
а) Докажите, что плоскость α и шар пересекаются более, чем в одной точке.
б) Найдите площадь сечения шара плоскостью α
Решение
В правильную треугольную пирамиду с боковым ребром sqrt13 и стороной основания 6 вписан шар ! 36 вариантов ФИПИ Ященко 2023 Вариант 5 Задание 13 ...X
3479 В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD. Диагонали трапеции пересекаются в точке O. Точки M и N — середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO.
а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией.
б) Найдите площадь сечения пирамиды SABCD плоскостью α, если AD=9, BC=7, SO=6, а прямая SO перпендикулярна прямой AD
Решение
В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 13 # ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Санкт-Петербург, Центр # Задачи-Аналоги   3357    3361   ...X
3470 В основании пирамиды лежит параллелограмм со сторонами 8 и 10, а его большая диагональ равна 2sqrt73. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 4.
а) Докажите, что две боковые грани являются прямоугольными треугольниками.
б) Найдите площади двух других боковых граней
Решение
В основании пирамиды лежит параллелограмм со сторонами 8 и 10, а его большая диагональ равна 2sqrt73 ! Тренировочный вариант 399 от Ларина Задание 13 ...X

К следующей страницеПоказать ещё…

Показана страница 1 из 37

Тренировочная работа №3 статград пробник ЕГЭ 2023 по математике 11 класс 12 тренировочных вариантов МА2210301-МА2210312 с ответами и решением базовый и профильный уровень (БАЗА И ПРОФИЛЬ). Официальная дата проведения работы: 28 февраля 2023 года.

Скачать ответы и решения для вариантов

Пробник ЕГЭ 2023 математика 11 класс статград база

Варианты профильного уровня ЕГЭ 2023 математика статград

ответы для олимпиады

Вариант МА2210301 и ответы

1. Каждый день во время конференции расходуется 60 пакетиков чая. Конференция длится 9 дней. В пачке чая 50 пакетиков. Какого наименьшего количества пачек чая хватит на все дни конференции?

2. Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

3. В таблице показано расписание пригородных электропоездов по направлению Москва Курская – Крутое – Петушки. Владислав пришёл на станцию Москва Курская в 18:20 и хочет уехать в Петушки на электропоезде без пересадок. Найдите номер ближайшего электропоезда, который ему подходит.

5. В коробке вперемешку лежат чайные пакетики с чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с чёрным чаем в 4 раза больше, чем пакетиков с зелёным. Найдите вероятность того, что случайно выбранный из этой коробки пакетик окажется пакетиком с чёрным чаем.

8. Некоторые учащиеся 10-х классов школы ходили в апреле на спектакль «Гроза». В мае некоторые десятиклассники пойдут на постановку по пьесе «Бесприданница», причём среди них не будет тех, кто ходил в апреле на спектакль «Гроза». Выберите утверждения, которые будут верны при указанных условиях независимо от того, кто из десятиклассников пойдёт на постановку по пьесе «Бесприданница».

  • 1) Каждый учащийся 10-х классов, который не ходил на спектакль «Гроза», пойдёт на постановку по пьесе «Бесприданница».
  • 2) Нет ни одного десятиклассника, который ходил на спектакль «Гроза» и пойдёт на постановку по пьесе «Бесприданница».
  • 3) Среди учащихся 10-х классов этой школы, которые не пойдут на постановку по пьесе «Бесприданница», есть хотя бы один, который ходил на спектакль «Гроза».
  • 4) Найдётся десятиклассник, который не ходил на спектакль «Гроза» и не пойдёт на постановку по пьесе «Бесприданница».

9. На фрагменте географической карты схематично изображены границы деревни Покровское и очертания озёр (площадь одной клетки равна одному гектару). Оцените приближённо площадь озера Малого. Ответ дайте в гектарах с округлением до целого значения.

10. Диагональ прямоугольного экрана ноутбука равна 40 см, а ширина экрана ― 32 см. Найдите высоту экрана. Ответ дайте в сантиметрах.

11. Пирамида Снофру имеет форму правильной четырёхугольной пирамиды, сторона основания которой равна 220 м, а высота — 104 м. Сторона основания точной музейной копии этой пирамиды равна 55 см. Найдите высоту музейной копии. Ответ дайте в сантиметрах.

12. В треугольнике ABC проведена биссектриса AL, угол ALC равен 112° , угол ABC равен 106° . Найдите угол ACB . Ответ дайте в градусах.

13. Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6, а второго — 6 и 4. Во сколько раз объём второго цилиндра больше объёма первого?

15. В школе мальчики составляют 55 % от числа всех учащихся. Сколько в этой школе мальчиков, если их на 50 человек больше, чем девочек?

19. Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из исходного числа вычли второе и получили 3366. В ответе укажите какое-нибудь одно такое исходное число.

20. Имеется два сплава. Первый содержит 45 % никеля, второй — 5 % никеля. Из этих двух сплавов получили третий сплав, содержащий 15 % никеля. Масса первого сплава равна 40 кг. На сколько килограммов масса первого сплава была меньше массы второго?

21. Прямоугольник разбит на четыре меньших прямоугольника двумя прямолинейными разрезами. Периметры трёх из них, начиная с левого верхнего и далее по часовой стрелке, равны 2, 3 и 18. Найдите периметр четвёртого прямоугольника.

Вариант МА2210305 и ответы

1. Для покраски 1 кв. м потолка требуется 230 г краски. Краска продаётся в банках по 2 кг. Какое наименьшее количество банок краски нужно для покраски потолка площадью 44 кв. м?

3. В таблице представлены налоговые ставки на автомобили в Москве с 1 января 2013 года. Какова налоговая ставка (в рублях за 1 л. с. в год) на автомобиль мощностью 115 л. с.?

5. Помещение освещается двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года обе лампы перегорят.

6. В таблице даны результаты олимпиад по русскому языку и биологии в 9 «А» классе. Похвальные грамоты дают тем школьникам, у кого суммарный балл по двум олимпиадам больше 110 или хотя бы по одному предмету набрано не меньше 60 баллов. Укажите номера учащихся 9 «А» класса, набравших меньше 60 баллов по русскому языку и получивших похвальные грамоты, без пробелов, запятых и других дополнительных символов.

7. На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D. В правом столбце указаны значения производной функции в точках A, B, C и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

8. Некоторые учащиеся 10-х классов школы ходили в ноябре на оперу «Евгений Онегин». В марте некоторые десятиклассники пойдут на оперу «Руслан и Людмила», причём среди них не будет тех, кто ходил в ноябре на оперу «Евгений Онегин». Выберите утверждения, которые будут верны при указанных условиях независимо от того, кто из десятиклассников пойдёт на оперу «Руслан и Людмила».

  • 1) Каждый учащийся 10-х классов, который не ходил на оперу «Евгений Онегин», пойдёт на оперу «Руслан и Людмила».
  • 2) Нет ни одного десятиклассника, который ходил на оперу «Евгений Онегин» и пойдёт на оперу «Руслан и Людмила».
  • 3) Найдётся десятиклассник, который не ходил на оперу «Евгений Онегин» и не пойдёт на оперу «Руслан и Людмила».
  • 4) Среди учащихся 10-х классов этой школы, которые не пойдут на оперу «Руслан и Людмила», есть хотя бы один, который ходил на оперу «Евгений Онегин».

9. План местности разбит на клетки. Каждая клетка обозначает квадрат 1м×1м . Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.

10. Пожарную лестницу длиной 10 м приставили к окну дома. Нижний конец лестницы отстоит от стены на 6 м. На какой высоте находится верхний конец лестницы? Ответ дайте в метрах.

11. Прямолинейный участок трубы длиной 4 м, имеющей в сечении окружность, необходимо покрасить снаружи (торцы трубы открыты, их красить не нужно). Найдите площадь поверхности, которую необходимо покрасить, если внешний обхват трубы равен 19 см. Ответ дайте в квадратных сантиметрах.

12. В треугольнике ABC стороны AC и BC равны. Внешний угол при вершине B равен 146° . Найдите угол C. Ответ дайте в градусах.

13. Даны два шара радиусами 4 и 2. Во сколько раз объём большего шара больше объёма меньшего?

15. Число больных гриппом в школе уменьшилось за месяц в пять раз. На сколько процентов уменьшилось число больных гриппом?

19. Найдите пятизначное число, кратное 15, любые две соседние цифры которого отличаются на 3. В ответе укажите какое-нибудь одно такое число.

20. Теплоход, скорость которого в неподвижной воде равна 19 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 5 часов, а в исходный пункт теплоход возвращается через 43 часа после отправления из него. Сколько километров проходит теплоход за весь рейс?

21. На кольцевой дороге расположены четыре бензоколонки: А, Б, В и Г. Расстояние между А и Б — 55 км, между А и В — 40 км, между В и Г — 40 км, между Г и А — 30 км (все расстояния измеряются вдоль кольцевой дороги по кратчайшей дуге). Найдите расстояние (в километрах) между Б и В.

Вариант МА2210309 и ответы

2. Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.

3. В группе 16 человек, среди них — Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.

4. Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

9. Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

13. Основанием правильной пирамиды PABCD является квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если AB = 30.

15. По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n , при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

16. В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M . Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22 .

18. У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький — 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять. а) Может ли Аня купить 24 конверта? б) Может ли Аня купить 29 конвертов? в) Какое наибольшее число конвертов может купить Аня?

Вариант МА2210311 и ответы

1. Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.

2. Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 78. Найдите площадь поверхности шара.

3. В магазине в среднем из 120 сумок 15 имеют скрытые дефекты. Найдите вероятность того, что выбранная в магазине сумка окажется со скрытыми дефектами.

4. Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.

9. Игорь и Паша, работая вместе, могут покрасить забор за 40 часов. Паша и Володя, работая вместе, могут покрасить этот же забор за 48 часов, а Володя и Игорь, работая вместе, — за 60 часов. За сколько часов мальчики покрасят забор, работая втроём?

13. Основанием правильной пирамиды PABCD является квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если AB = 24 .

15. По вкладу «А» банк в конце каждого года планирует увеличивать на 11 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n , при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

16. В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M . Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 18.

18. У Ани есть 400 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 22 рубля, а маленький — 17 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять. а) Может ли Аня купить 19 конвертов? б) Может ли Аня купить 23 конверта? в) Какое наибольшее число конвертов может купить Аня?

Работы статград по математике для 9 и 11 класса

Share the post «Математика 11 класс ЕГЭ 2023 статград база и профиль варианты и ответы с решением»

  • Twitter
  • VKontakte
  • WhatsApp

Метки: ЕГЭ 2023заданияматематика 11 классответыстатградтренировочная работа

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ задание 504400
  • Егэ задание 4 по русскому языку тесты с ответами ударения
  • Егэ задание 325904
  • Егэ задание 26778
  • Егэ задание 20 знаки препинания в сложном предложении с разными видами связи вариант 1

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии