Задание № 18 варианта КИМ ЕГЭ по математике профильного уровня
Задача с параметром – для обычного школьника одна из самых сложных задач варианта КИМ ЕГЭ: в программах по математике для общеобразовательных школ (за исключением профильных и специализированных классов, школ и лицеев) таким задачам либо не уделяется должного внимания, либо они не рассматриваются вовсе. Несмотря на это, знание набора методов и подходов к решению таких задач и определенная практика их решения позволяют продвинуться в решении задачи с параметром достаточно далеко и если уж не решить ее полностью, то хотя бы получить за нее некоторое количество баллов на экзамене.
Ранее, до появления единого государственного экзамена, задачи с параметрами входили в варианты вступительных экзаменов по математике в ведущие вузы, а сегодня входят в вариант КИМ ЕГЭ профильного уровня. Дело в том, что эти задачи обладают высокой диагностической ценностью: они позволяют не только определить, насколько хорошо выпускник знает основные разделы школьного курса математики, но и проверить, насколько высок уровень его математического и логического мышления, насколько сильны первоначальные навыки математической исследовательской деятельности, а главное – насколько успешно он сможет овладеть курсом математики в вузе.
«Научите меня решать задачи с параметром», – такую просьбу я часто слышу от своих учеников. Что ж, эта задача потребует от выпускника немало интеллектуальных усилий. С чего начать изучение? С освоения методов решения задач с параметром. Собственно, если вы внимательно читали наши рекомендации, как подготовиться к решению сложных задач варианта КИМ ЕГЭ, то заметили, что это универсальный совет. Именно так построен наш курс «1С:Репетитор»: изучаем как можно более широкий спектр методов и приемов решения задач и тренируемся в применении этих методов на практике.
Чему нужно научиться, решая задачи с параметром
В первую очередь – правильно применять равносильные преобразования уравнений, неравенств и их систем. То есть понять, при каких ограничениях, накладываемых на параметр, можно выполнять то или иное преобразование. Лучше всего начать с заданий вида: «Для каждого значения параметра решить…» и рассмотреть по возможности все основные элементарные функции, встречающиеся в школьном курсе математики.
Если с несложными задачами такого вида школьник справляется неплохо, то можно переходить к изучению аналитических методов решения задач, содержательно усложняя и классифицируя задачи с точки зрения применения к ним этих методов исследования. Имеется в виду знакомство с подходами к решению задач, содержащих формулировки типа: «При каких значениях параметра уравнение (неравенство, система) имеет одно (два, три, бесконечно много и т.д.) решений», «При каких значениях параметра решением уравнения (неравенства, системы) является некоторое подмножество множества действительных чисел» и т.д.
Следующий шаг, который мы рекомендуем, – тщательно изучить схему исследования квадратичной функции. Поскольку квадратичная функция является одной из самых хорошо изученных в школьном курсе математики, на ее основе можно предложить большое количество исследовательских задач, разнообразных по форме и содержанию, чем и пользуются составители вариантов КИМ ЕГЭ.
Мы рекомендуем подойти к рассмотрению данных задач по следующей схеме:
Следующая тема курса – графические методы решения задач с параметром
Существует два принципиально различных подхода – построение графиков функций или уравнений в плоскости (x; y) или в плоскости (x; a). Кроме того, для графического метода решения задач с параметром в плоскости (x; y) необходимо рассмотреть различные виды преобразования графиков – обычно это параллельный перенос, поворот прямой и гомотетия. Есть класс задач, решение которых основано на аналитических свойствах функций (области определения, области значений, четности, периодичности и т.д.), эти свойства и приемы их использования тоже нужно знать.
На этом перечень методов решения задач с параметрами, разумеется, не заканчивается, но анализ вариантов КИМ ЕГЭ профильного уровня и практика показывают, что в настоящее время этого достаточно для успешного решения задачи № 18 на экзамене.
В заключение отметим, что выстроить подобный курс самостоятельно, без преподавателя, обычный школьник не сможет, даже имея под рукой хорошие учебные пособия по методам решения задач с параметром. Здесь необходима помощь опытного наставника, который сможет подобрать нужные задачи и выстроить траекторию движения школьника по ним.
Заметим, кстати, что весьма эффективным инструментом для изучения именно методов решения задач с параметром являются интерактивные тренажеры с пошаговым разбором решения.
Работая с таким тренажером, школьник одновременно учится выстраивать логику решения задачи с параметром и контролирует правильность выполнения каждого шага решения. Это очень важное умение, так как одна из основных сложностей в решении задачи с параметром состоит в том, что необходимо на каждом шаге решения понимать, что означают уже полученные результаты и что (в зависимости от этих результатов) еще остается сделать, чтобы довести решение до конца.
Регулярно тренируйтесь в решении задач
Чтобы начать заниматься на портале «1С:Репетитор», достаточно Зарегистрироваться.
Вы можете:
- Начать заниматься бесплатно.
Купить доступ к этой задаче в составе
экспресс-курса «Алгебра» и научиться решать задачи №13, №15, №17, №18 и №19 на максимальный балл.
Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.
Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.
Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
Разбор задач с параметрами из ЕГЭ по математике, по теме задачи с параметром ЕГЭ, как решать задание 18 в экзамене ЕГЭ, задачи с параметром ЕГЭ, задания с параметром ЕГЭ, задача 18 ЕГЭ, модуль и окружности, решение параметров ЕГЭ, решение задачи 18, система уравнений с параметром, научиться решать задачи с параметрами, сложных задач варианта КИМ ЕГЭ, начертить графики функций, ЕГЭ по математике профильного уровня, методы решения уравнений и неравенств, выпускникам 11 класса в 2018 году, поступающим в технический вуз.
Задачи с параметрами на ЕГЭ по математике
Анна Малкова
Задача с параметрами – одна из самых сложных в ЕГЭ по математике Профильного уровня. Это задание №17.
И знать здесь действительно нужно много.
Лучше всего начать с темы «Элементарные функции и их графики».
Повторить, что такое функция, что такое четные и нечетные функции, периодические, взаимно обратные.
Научиться строить графики всех элементарных функций (и отличать по внешнему виду логарифм от корня квадратного, а экспоненту – от параболы).
Освоить преобразования графиков функций и приемы построения графиков.
И после этого – учимся решать сами задачи №17 Профильного ЕГЭ.
Вот основные типы задач с параметрами:
Что такое параметр? Простые задачи с параметрами
Базовые элементы для решения задач с параметрами
Графический способ решения задач с параметрами
Квадратичные уравнения и неравенства с параметрами
Использование четности функций в задачах с параметрами
Условия касания в задачах с параметрами
Метод оценки в задачах с параметрами
Вот пример решения и оформления задачи с параметром
Еще одна задача с параметром – повышенного уровня сложности. Автор задачи – Анна Малкова
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 1, задача 18
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 5, задача 18
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 11, задача 18
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 26, задача 18
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 36, задача 18
И несколько полезных советов тем, кто решает задачи с параметрами:
1. Есть два универсальных правила для решения задач с параметрами. Помогают всегда. Хорошо, в 99% случаев помогают. То есть почти всегда.
— Если в задаче с параметром можно сделать замену переменной – сделайте замену переменной.
— Если задачу с параметром можно решить нарисовать – рисуйте. То есть применяйте графический метод.
2. Новость для тех, кто решил заниматься только алгеброй и обойтись без геометрии (мы уже рассказывали о том, почему это невозможно). Многие задачи с параметрами быстрее и проще решаются именно геометрическим способом.
Эксперты ЕГЭ очень не любят слова «Из рисунка видно…» Ваш рисунок – только иллюстрация к решению. Вам нужно объяснить, на что смотреть, и обосновать свои выводы. Примеры оформления – здесь. Эксперты ЕГЭ также не любят слова «очевидно, что…» (когда ничего не очевидно) и «ёжику ясно…».
3. Сколько надо решить задач, чтобы освоить тему «Параметры на ЕГЭ по математике»? – Хотя бы 50, и самых разных. И в результате, посмотрев на задачу с параметром, вы уже поймете, что с ней делать.
4. Задачи с параметрами похожи на конструктор. Разобрав много таких задач, вы заметите, как решение «собирается» из знакомых элементов. Сможете разглядеть уравнение окружности или отрезка. Переформулировать условие, чтобы сделать его проще.
На нашем Онлайн-курсе теме «Параметры» посвящено не менее 12 двухчасовых занятий. Кстати, оценивается задача 17 Профильного ЕГЭ в 4 первичных балла, которые отлично пересчитываются в тестовые!
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задачи с параметрами на ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
23 апреля 2017
В закладки
Обсудить
Жалоба
Параметры. От простого к сложному. Практикум по решению задач
Решение задач с параметрами является одним из самых трудных разделов школьной математики и требует большого количества времени на их изучение.
Теоретическое изучение физических процессов, решение экономических задач часто приводит к различным уравнениям или неравенствам, содержащим параметры, и необходимой частью их решения является исследование характера процесса в зависимости от значений параметров. Таким образом, задачи с параметрами представляют собой небольшие исследовательские задачи.
Автор: Агашкова Надежда Анатольевна.
pr-sl-p.pdf
Пора начать разбираться с один и самых сложных заданий на ЕГЭ – с параметрами. Этот номер может принести целых 4 балла.
Итак, параметр – это буква (обычно в заданиях используют букву а), вместо которой можно подставить число.
Решить задачу с параметром – значит найти такое значение параметра а, при котором будет выполняться условие задачи. Стоит отметить, что существует огромное количество различных вариантов формулировки задачи. Самым популярным является: «Найти все значения параметра а, при котором уравнение такое-то имеет столько-то корней».
Что нужно знать, чтобы научиться решать параметры?
Таким вопросом задаются многие школьники. Ответ прост: буквально всё. Параметры – самая обширная тема ЕГЭ, тут может быть и тригонометрия, и функции (здесь надо уметь исследовать функцию при помощи производной), и степени, и логарифмы, и дроби и всё-всё-всё остальное, а возможно и все темы сразу. Причём не только в уравнениях, но и в неравенствах.
Так что прежде чем браться за параметры, убедись, что ты отлично решаешь обычные уравнения, щёлкаешь неравенства, а первая часть занимает у тебя не более 15-ти минут.
Краткий алгоритм решения параметров, где дробь равна нулю:
1) необходимо перейти к системе, состоящей из двух условий: знаменатель не равен 0, а числитель равен 0.
2) далее нужно дать условие, чтобы уравнение (числитель) имело два корня, следовательно его дискриминант больше 0.
3) выписать дискриминант, обозначить, что он больше 0 и решить неравенство.
4) выразить из неравенства (которое вышло из знаменателя) а и подставить в уравнение (числитель).
5) дать условие, что при подстановке а в уравнение не должно получаться верное равенство.
6) выписать промежуток из пункта 3 и выколоть точки, которые получились в пункте 5. Это и будет ответ.
Параметры с модулем
Для начала стоит вспомнить, что же такое модуль и как его раскрыть.
Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:
|a| > 0
Модуль положительного числа равен самому числу.
|a| = a, если a > 0
Модуль отрицательного числа равен противоположному числу.
|−a| = a
Модуль нуля равен нулю.
|0| = 0, если a = 0
Противоположные числа имеют равные модули.
|−a| = |a| = a
Когда писать систему, а когда совокупность?
Многие ученики, решая параметры (и не только их) задаются вопросом: тут ставить систему или совокупность?
В двух словах это можно прокомментировать так:
Если надо пересечь решения, то будет система, а если объединить – совокупность. Или, сформулировав по-другому, скажем: система – это когда мы говорим «выполняется и одно условие, и другое», а совокупность – «и то, и другое».
Допустим, мы решаем квадратное уравнение, в котором дискриминант больше нуля. Следовательно оно будет иметь два корня. Но ведь х не может быть двумя числами одновременно, а значит мы говорим, что х – это такое-то число или другое число.
(по оформлению: такое-то число и другое число сделать более бледным, серым)
В этом случае мы используем совокупность.
Заметим, что когда мы решаем квадратное уравнение по теореме Виета (а кто-то вообще использует теорему Виета вместо дискриминанта?), то условие о сумме и произведении мы записываем в системе, ведь они должны выполняться одновременно:
x2+px+q=0
{ x1+x2=-p
x1*x2=q
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!
Сразу оговорюсь — для того, чтобы научиться решать задачи с параметром, не выйдет просто прочитать краткую инструкцию с указаниями, что вам делать. Нужно потратить некоторое время, чтобы научиться решать такие задачи. Здесь необходимо развитое аналитическое мышление (задачи бывают совершенно разные и нужно уметь анализировать разные функции), отличное умение решать все типы уравнений и неравенств (если вы не можете решить любое задание С1 или С3, то для вас будет очень сложно решить и С6), знание, как ведут себя различные функции и умение строить их графики. Как видите, все не так уж просто, но и 4 первичных балла дают не просто так. Тем не менее, решить С6 более чем реально, нужно набраться терпения. На самом деле, не так уж и много материала, да и раз вы задумались о С6, скорее всего, большинство необходимых знаний у вас есть, в основном придется потратить время на отработку практических навыков и разбор различных методов решения. Материал разбит на несколько частей, и я рекомендую внимательно их изучить, разбирая представленные примеры.
Решение уравнения или неравенства с параметром обычно предполагает несколько случаев, и ни один из них нельзя потерять.
Для того, чтобы решить задачу с параметром, необходимо для начала преобразовать заданное выражение к более простому виду, если это, конечно, возможно. При этом необходимо понимать, какие преобразования являются равносильными, а какие нет. В противном случае могут появиться посторонние корни, которые будет нужно проверить (это не всегда просто, поэтому рекомендую стараться использовать равносильные преобразования).
Рекомендации к выполнению задания 18 ЕГЭ:
- Надо избавиться от логарифмов, модулей, показательных степеней и т.д.
- Еще раз внимательно прочитать задание. Понять, что от вас требуется.
- Попытаться проанализировать получившееся после преобразований выражение на наличие каких-либо специальных свойств функции (периодичность, возрастание/убывание, четность/нечетность и т.д.)
- Часто решить задачу с параметром можно и удобно при помощи графиков. Иногда удобно выполнять построения на обычной координатной плоскости (Х, У), а иногда удобно построить графики в плоскости (Х, а), где а – параметр. Данный способ решения возможен, если вы видите знакомые функции (параболы, прямые, гиперболы, окружности и т.д.). Разумеется, бывает несколько способов решения поставленной задачи, но графический, как правило, наименее громоздок и прост для понимания. Ведь графики показывают поведение функций, и весь необходимый анализ появится у вас перед глазами.
- Важно помнить, что методы решения уравнения или неравенства зависят от степени многочлена. Для этого необходимо рассматривать те значения параметра, при которых (если это возможно) обращается в нуль коэффициент при старшей степени. Пример: (a*x^2-3*x+1=0), при (a=0) выражение принимает вид (-3*x+1=0), т.е. превращается в линейную функцию, а способы решения квадратного и линейного уравнений различны.
Задачи с параметром, ЕГЭ №17 (бывшая №18) считаются чуть ли не самыми сложными на ЕГЭ и за них дают целых 4 первичных балла!
В этой статье вы найдете несколько вебинаров на решение задач с параметром. Посмотрите их и вы поймете, что это не такая уж и сложная штука.
Мы будем добавлять сюда новые вебинары на задачу с параметром по мере их поступления. Заходите сюда и делитесь этой статьей с друзьями.
Или смотрите наши бесплатные вебинары на нашем YouTube канале:
Задачи с параметром. Исследование уравнений и неравенств при всех значениях параметра. ЕГЭ №17 (18)
Это первый вебинар по теме “Параметры” нашего курса подготовки к ЕГЭ по математике. А всего по этой теме у нас 9 вебинаров, где мы научим вас решать любую задачу с параметром.
А сейчас мы научимся решать “обычные” уравнения с параметром, то есть такие, в которых мы забываем про параметр, считаем его как бы известным числом.
А потом научимся анализировать ответ – определять, при каких значениях параметра у нашего ответа появляются особенности (типа деления на 0).
Поехали!
Задача с параметром. Мартовский статград 2021. ЕГЭ №17 (18)
Почему задача с параметром ЕГЭ17 по математике самая важная для ЕГЭ? В чем ее особенность?
Мы привыкли, что задача с параметром на ЕГЭ – это какое-то уравнение окружности, которую надо нарисовать и смотреть, где она пересекается с другими фигурами или осями координат. Но иногда задача №17 бывает совсем другой – никаких графиков и геометрии, чистая алгебра: нужно решать уравнение или неравенство (или их систему).
И такие задачи мы уже научились решать на нашем курсе.
Далеко не всегда это уравнение или неравенство решается “по-обычному”: иногда нам приходится включать анализ функций, вспоминать их свойства (такие как непрерывность, монотонность, чётность, периодичность), либо применять особые методы (например, менять параметр и переменную ролями).
Все эти методы и свойства мы разберем на этом вебинаре.
А важная она потому, что задача с параметром включает в себя практически все математические навыки. И научившись решать любую задачу с параметром, вы очень хорошо подготовитесь к ЕГЭ!
Этот такая лакмусовая бумажка, готовы ли вы к ЕГЭ, умеете ли вы решать задачу с параметром?
Что скажите? Как вам задача с параметром?
Мы собрали на этой странице некоторые вебинары по 17-й задаче.
Возьмите ручку и бумагу и решайте задачи вместе с Алексеем Шевчуком – так вы получите от вебинара максимум.
Как вам эта задачи и эти вебинары? Напишите в комментариях.
Удачи на экзамене!
Наши курсы по подготовке к ЕГЭ по математике, информатике и физике
Алексей Шевчук – ведущий мини-групп
математика, информатика, физика
+7 (905) 541-39-06 – WhatsApp/Телеграм для записи
alexei.shevchuk@youclever.org – email для записи
- тысячи учеников, поступивших в лучшие ВУЗы страны
- автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
- закончил МФТИ, преподавал на малом физтехе;
- репетиторский стаж – c 2003 года;
- в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов – как обычно дурацкая ошибка:);
- отзыв на Профи.ру: “Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами”.