Новые задания №1 ЕГЭ 2022 по математике профильного уровня — простейшие уравнения.
Для успешного результата необходимо уметь решать рациональные, иррациональные, показательные, тригонометрические и логарифмические уравнения, их системы.
Задание №1 ЕГЭ 2022 математика профильный уровень Прототипы
Источник: math100.ru | → Рациональные уравнения
→ Иррациональные уравнения → Показательные уравнения → Логарифмические уравнения → Тригонометрические уравнения |
time4math.ru | → скачать задания |
vk.com/ekaterina_chekmareva | → задания |
При отработке данного задания будут полезны книги:
Купить ЕГЭ 2022 Математика. 100 баллов. Профильный уровень. Решение уравнений и неравенств
Купить Математика: уравнения и неравенства. Подготовка к ЕГЭ: профильный уровень
Купить Показательные и логарифмические уравнения. ЕГЭ. Математика
Купить Методы решения тригонометрических уравнений. ЕГЭ. Математика
Связанные страницы:
Тренировочные варианты ЕГЭ 2022 по математике профильного уровня
Решение 17 задания ЕГЭ по профильной математике
Тренировочные варианты ЕГЭ 2022 по математике базового уровня
Купить сборники типовых вариантов ЕГЭ по математике
Задание 9 профильного ЕГЭ по математике. Практика
Задания первой части (1-11) профильного ЕГЭ по математике в новом формате 2022.
Все задачи для тестов взяты из открытого банка с сайта mathege.ru. Подборка группы vk.com/egeatom/
Предыдущие варианты:
4ege.ru/tr…
4ege.ru/tr…
За это задание ты можешь получить 1 балл. На решение дается около 3 минут. Уровень сложности: базовый.
Средний процент выполнения: 80.6%
Ответом к заданию 1 по математике (профильной) может быть целое число или конечная десятичная дробь.
Разбор сложных заданий в тг-канале
Задачи для практики
Задача 1
В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=7$, $cos A={3} / {5}$
(см. рис.). Найдите $AB$.
Решение
$sin A = {BC}/{AB}$.
$sin^2A + cos^2A = 1$, то есть $sin A = √{1 — {9}/{25}} = {4}/{5}$.
${4}/{5} = {7}/{AB}, AB = {35}/{4}=8.75$.
Ответ: 8.75
Задача 2
Угол $ACO$ равен $32^°$. Его сторона $CA$ касается окружности с центром в точке $O$. Сторона $CO$ пересекает окружность в точках $B$ и $D$ (см. рис.). Найдите градусную меру дуги $AD$ окружности, заключённой внутри этого угла. Ответ дайте в градусах.
Решение
$∠ AOC=90°-∠ ACO$, так как $∠ OAC=90°$ (радиус, проведённый в точку касания, перпендикулярен касательной). $∠ AOC=90°-32°=58°$. $∠ AOC$ — центральный и измеряется дугой $AB$, то есть $⌣ AB=58°$. Отсюда: дуга $AD$ равна $180°-58°=122°$, так как дуга $DB=180°$.
Ответ: 122
Задача 3
Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Меньшая дуга $AB$ равна $48^°$. Найдите угол $ACB$. Ответ дайте в градусах.
Решение
$∠C AB = ∠C BA$, как углы между хордой и касательной, они измеряются половиной дуги $AB$, то есть $∠C AB = {1}/{2} ︶ AB$ и $∠C BA = {1}/{2} ︶ AB$.
Отсюда, $∠AC B = 180°- ︶AB = 180° — 48° = 132°$.
Ответ: 132
Задача 4
Периметр треугольника равен $73$, а радиус вписанной окружности равен $4$. Найдите площадь этого треугольника.
Решение
$S_{ABC} = p · r$, где $p$ — полупериметр треугольника, а $r$ — радиус вписанной окружности, тогда $S_{ABC} = {73}/{2} · 4 = 146$.
Ответ: 146
Задача 5
Периметр треугольника равен $40$, а радиус вписанной окружности равен $3$. Найдите площадь этого треугольника.
Решение
$S_{ABC} = p · r$, где $p$ — полупериметр треугольника, а $r$ — радиус вписанной окружности, тогда $S_{ABC} = {40}/{2} · 3 = 60$.
Ответ: 60
Задача 6
Отрезки $MN$ и $AB$ — диаметры окружности с центром $O$ (см. рис.). Угол $AOM$ равен $28^°$. Найдите вписанный угол $MNB$. Ответ дайте в градусах.
Решение
$∠AOM$ — центральный, он измеряется дугой $AM$, то есть $︶AM = 28°$. $AB$ — диаметр, значит $︶AB = 180°$, а $︶MB = 180° — 28° = 152°$. $∠MNB$ — вписанный и он измеряется половиной дуги $MB$, то есть $∠MNB = 76°$.
Ответ: 76
Задача 7
Отрезки $MN$ и $AB$ — диаметры окружности с центром $O$ (см. рис.). Угол $MOB$ равен $116^°$. Найдите вписанный угол $MAB$. Ответ дайте в градусах.
Решение
$∠ MOB$ — центральный, он измеряется дугой $MB$. $∠ MAB$ — вписанный и он измеряется половиной дуги $MB$, то есть $∠ MAB={116°} / {2}=58°$.
Ответ: 58
Задача 8
В треугольнике $ABC$ равны боковые стороны $AC=BC$, $AH$ — высота, $AB=15$,
$sin ∠ BAC=0{,}6$ (см. рис.). Найдите $BH$.
Решение
В равнобедренном треугольнике углы при основании равны.
$∠BAC = ∠ABC, sin ∠ABC = {AH}/{AB}, AH = AB sin ∠ABC. AH = 15 · 0.6 = 9$.
Из $△AHB: HB = √{AB^2 — AH^2} = √{225 — 81} = √{144} = 12$.
Ответ: 12
Задача 9
В треугольнике $ABC$ $AC=BC$, $AH$ — высота, $AB=15$, $sin ∠ BAC={√ {5}} / {3}$ (см. рис.). Найдите $BH$.
Решение
В треугольнике напротив равных сторон лежат равные углы. $∠ BAC=∠ ABC$, $sin ∠ ABC={AH} / {AB}$, $AH=AB sin ∠ ABC$. $AH=15⋅ {√ {5}} / {3}=5√ {5}$. Из $▵ AHB:$ $HB=√ {AB^2-AH^2}=√ {225-125}=√ {100}=10$.
Ответ: 10
Задача 10
В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=9$, $sin A={4} / {11}$ (см. рис.). Найдите $AB$.
Решение
$sin A = {BC}/{AB}, AB = {BC}/{sin A} = {9}/{{4}/{11}} = {99}/{4} = 24.75$.
Ответ: 24.75
Задача 11
Найдите периметр прямоугольника, если его площадь равна $224$, а отношение соседних сторон равно ${2} / {7}$.
Решение
Рассмотрим прямоугольник $ABCD$
$AD : AB = 2 : 7, S_{ABCD} = AD · AB$
$S_{ABCD} = 224$, тогда $224 = AD · AB$
Пусть $x$ — некоторое положительное действительное число, тогда $AD = 2x, AB = 7x$
Отсюда, $224 = 2x · 7x$
$224 = 14x^2$
$x^2 = {224}/{14}$
$x^2 = 16$
$x = 4$
Следовательно, $P = 2(AD+AB) = 2(2·4+7·4) = 2·4(2+7) = 8·9 = 72$.
Ответ: 72
Задача 12
Найдите периметр прямоугольника, если его площадь равна $48$, а отношение соседних сторон равно $3:4$.
Решение
Рассмотрим прямоугольник $ABCD$ (см. рис.). $AD:AB=3:4$, $S_{ABCD}=AD⋅ AB$; $S_{ABCD}=48$, тогда
$48=AD⋅ AB$. Пусть $k$ — некоторое положительное действительное число и
$AD=3k$, $AB=4k$. Отсюда $48=3k⋅ 4k$; $48=12k^2$; $k^2=4$, $k=2$. Следовательно, $P=2(AD+AB)=2(3⋅ 2+4⋅ 2)=28$.
Ответ: 28
Задача 13
Площадь прямоугольника равна $22$. Найдите его большую сторону, если она на $9$ длиннее меньшей стороны.
Решение
$S_{ABCD} = AB·CB$.
Обозначим большую сторону через $x$, тогда меньшая сторона $x — 9$. Итак, $22 = x(x — 9)$
$ x^2 — 9x — 22 = 0$
$D = 81 + 88 = 169 = 13^2$
$ x = {9±13}/{2}$
$ x_1 = 11$
$ x_2 = -2$ (не подходит).
Ответ: 11
Задача 14
Основания равнобедренной трапеции равны $15$ и $9$. Высота трапеции равна $6$. Найдите тангенс острого угла.
Решение
Рассмотрим трапецию $ABCD$. Пусть $AB = CD, BK$ и $CM$ — высоты. Тогда $AK = MD$ и $AD = BC + 2AK$.
$tg ∠BAD = {BK}/{AK}, AK = {AD — BC}/{2} = {15 — 9}/{2} = 3, BK = 6$ (по условию). $tg ∠BAD = {6}/{3} = 2$.
Ответ: 2
Задача 15
Основания равнобедренной трапеции равны $14$ и $6$. Высота трапеции равна $7$. Найдите тангенс острого угла.
Решение
Рассмотрим трапецию $ABCD$. Пусть $AB = CD, BK$ и $CM$ высоты. Тогда $AK = MD$ и $AD = BC + 2AK$.
$tg ∠BAD = {BK}/{AK}, AK = {AD — BC}/{2} = {14 — 6}/{2} = 4, BK = 7$ (по условию). $tg ∠BAD = {7}/{4} = 1.75$.
Ответ: 1.75
Задача 16
В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=6√ {3}$, $tg A={√ {3}} / {3}$ (см. рис.). Найдите $AB$.
Решение
$tgA = {BC}/{AC}, {√3}/{3} = {BC}/{6√3}, BC = {6√3·√3}/{3} = 6$.
Из $△ABC: AB^2 = AC^2 + BC^2$;
$AB^2 = (6√3)^2 + 6^2 = 36·3 + 36 = 36·4 = 144, AB = 12$.
Ответ: 12
Задача 17
Найдите площадь ромба, если его диагонали равны $5$ и $16$.
Решение
Рассмотрим ромб $ABCD$.
$S_{ABCD} = {1}/{2}d_1d_2$, где $d_1$ и $d_2$ — диагонали ромба.
$S_{ABCD} = {1}/{2}·5·16 = 40$.
Ответ: 40
Задача 18
Угол при вершине, противолежащей основанию равнобедренного треугольника, равен $150^°$. Боковая сторона треугольника равна $12$. Найдите площадь этого треугольника.
Решение
Пусть в $△ABC ∠C = 150°, AC = CB$.
$S_{ACB} = {1}/{2}AC·CB·sin∠ACB = {1}/{2}·12·12·sin150° = 72·sin 30° =72·{1}/{2} = 36$.
Ответ: 36
Задача 19
Угол при вершине, противолежащей основанию равнобедренного треугольника, равен $30^°$. Боковая сторона треугольника равна $7$. Найдите площадь этого треугольника.
Решение
Пусть в $▵ ABC$ $∠ C=30°$, $AC=BC=7$ (см. рис.). $S_{ACB}={1} / {2} AC⋅ CB⋅ sin ∠ ACB={1} / {2}⋅ 7⋅ 7⋅ sin 30°={1} / {2}⋅ 49⋅ {1} / {2}={49} / {4}=12{,}25$.
Ответ: 12.25
Задача 20
Периметр прямоугольника равен $28$, а площадь $48$. Найдите меньшую сторону прямоугольника.
Решение
Пусть $x$ и $y$ — две стороны прямоугольника. Из условия следует система уравнений:
${{table {2(x+y)=28{,}}; {xy=48{.}};}$
Из первого уравнения системы: $x+y=14$
$y=14-x$.
Подставляя выражение для переменной $y$ во второе уравнение системы, получим:
$x(14-x)=48$
$x^2-14x+48=0$
$x_1=8$
$x_2=6$
Тогда $y_1=14-8=6$
$y_2=14-6=8$
Следовательно, меньшая сторона прямоугольника равна $6$.
Ответ: 6
Рекомендуемые курсы подготовки
Уважаемый посетитель!
Если у вас есть вопрос, предложение или жалоба, пожалуйста, заполните короткую форму и изложите суть обращения в текстовом поле ниже. Мы обязательно с ним ознакомимся и в 30-дневный срок ответим на указанный вами адрес электронной почты
Статус Абитуриент Студент Родитель Соискатель Сотрудник Другое
Филиал Абакан Актобе Алагир Алматы Алушта Анапа Ангарск Архангельск Армавир Асбест Астана Астрахань Атырау Баку Балхаш Барановичи Барнаул Белая Калитва Белгород Бельцы Берлин Бишкек Благовещенск Бобров Бобруйск Борисов Боровичи Бронницы Брянск Бузулук Чехов Челябинск Череповец Черкесск Дамаск Дербент Димитровград Дмитров Долгопрудный Домодедово Дубай Дубна Душанбе Екатеринбург Электросталь Елец Элиста Ереван Евпатория Гана Гомель Гродно Грозный Хабаровск Ханты-Мансийск Хива Худжанд Иркутск Истра Иваново Ижевск Калининград Карабулак Караганда Каракол Кашира Казань Кемерово Киев Кинешма Киров Кизляр Королев Кострома Красноармейск Краснодар Красногорск Красноярск Краснознаменск Курган Курск Кызыл Липецк Лобня Магадан Махачкала Майкоп Минеральные Воды Минск Могилев Москва Моздок Мозырь Мурманск Набережные Челны Нальчик Наро-Фоминск Нижневартовск Нижний Новгород Нижний Тагил Ногинск Норильск Новокузнецк Новосибирск Новоуральск Ноябрьск Обнинск Одинцово Омск Орехово-Зуево Орел Оренбург Ош Озёры Павлодар Пенза Пермь Петропавловск Подольск Полоцк Псков Пушкино Пятигорск Радужный Ростов-на-Дону Рязань Рыбинск Ржев Сальск Самара Самарканд Санкт-Петербург Саратов Сергиев Посад Серпухов Севастополь Северодвинск Щербинка Шымкент Слоним Смоленск Солигорск Солнечногорск Ставрополь Сургут Светлогорск Сыктывкар Сызрань Тамбов Ташкент Тбилиси Терек Тихорецк Тобольск Тольятти Томск Троицк Тула Тверь Тюмень Уфа Ухта Улан-Удэ Ульяновск Ургенч Усть-Каменогорск Вёшенская Видное Владимир Владивосток Волгодонск Волгоград Волжск Воркута Воронеж Якутск Ярославль Юдино Жлобин Жуковский Златоуст Зубова Поляна Звенигород
Тип обращения Вопрос Предложение Благодарность Жалоба
Тема обращения Поступление Трудоустройство Обучение Оплата Кадровый резерв Внеучебная деятельность Работа автоматических сервисов университета Другое
* Все поля обязательны для заполнения
Я даю согласие на обработку персональных данных, согласен на получение информационных рассылок от Университета «Синергия» и соглашаюсь c политикой конфиденциальности
ЕГЭ-2022 (профиль)
Задание 1 Простейшие уравнения.
1. Решите
уравнение
2. Найдите
наибольший корень уравнения
3. Решите
уравнение
4. Решите
уравнение
5. Найдите
сумму корней уравнения
6. Квадратный
трехчлен разложили на множители . Найдите
.
7. Решите
уравнение
8. Решите
уравнение
9. Решите
уравнение
10. Решите
уравнение
11. Решите
уравнение
12. Решите
уравнение
13. Решите
уравнение
14. Решите
уравнение
15. Найдите
наименьший корень уравнения
16. Найдите
сумму корней уравнения
17. Найдите
наибольший корень уравнения
18. Решите
уравнение
19. Найдите
наибольший корень уравнения
20. Решите
уравнение
21. Решите
уравнение
22. Найдите
наименьший положительный корень уравнения
23. Найдите
наибольший корень уравнения
24. Найдите
наименьший корень уравнения
25. Найдите
рациональный корень уравнения
26. Найдите
наибольший корень уравнения
27. Найдите
наименьший корень уравнения
28. Решите
уравнение
29. Решите
уравнение
30. Найдите
наименьший корень уравнения
31. Решите
уравнение
32. Решите
уравнение
33. Решите
уравнение
34. Найдите
наибольший отрицательный корень уравнения
35. Найдите
наименьший положительный корень уравнения
36. Найдите
наибольший отрицательный корень уравнения
37. Найдите
корни уравнения (в градусах) из промежутка
Ответы:
1. -4 |
11. -4 |
21. 8 |
31. |
2. 5 |
12. 16 |
22. |
32. 1 |
3. -2 |
13. -4 |
23. 2 |
33. -2 |
4. -3,3 |
14. 1,5 |
24. 2 |
34. |
5. 0 |
15. -2 |
25. 1 |
35. 4 |
6. 3 |
16. 0 |
26. -8 |
36. -7 |
7. |
17. 2 |
27. -2 |
37. 330 |
8. -4; |
18. 1 |
28. |
|
9. 1 |
19. -2 |
29. 2 |
|
10. -7 |
20. 2 |
30. 1,4 |
Задание 1
1.1 | Найдите корень уравнения 3^{x-5}=81. | Смотреть видеоразбор |
1.2 | Найдите корень уравнения sqrt{3x+49}=10. | Смотреть видеоразбор |
1.3 | Найдите корень уравнения log_8(5x+47)=3. | Смотреть видеоразбор |
1.4 | Решите уравнение sqrt{2x+3}=x. | Смотреть видеоразбор |
Задание 2
2.1 | В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене выпускнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах. | Смотреть видеоразбор |
2.2 | Вероятность того, что мотор холодильника прослужит более 1 года, равна 0,8, а вероятность того, что он прослужит более 2 лет, равна 0,6. Какова вероятность того, что мотор прослужит более 1 года, но не более 2 лет? | Смотреть видеоразбор |
Задание 3
3.1 | Треугольник ABC вписан в окружность с центром O. Угол BAC равен 32°. Найдите угол BOC. Ответ дайте в градусах. | Смотреть видеоразбор |
3.2 | Площадь треугольника ABC равна 24; DE – средняя линия, параллельная стороне AB. Найдите площадь треугольника CDE. | Смотреть видеоразбор |
3.3 | В ромбе ABCD угол DBA равен 13°. Найдите угол BCD. Ответ дайте в градусах. | Смотреть видеоразбор |
3.4 | Стороны параллелограмма равны 24 и 27. Высота, опущенная на меньшую из этих сторон, равна 18. Найдите высоту, опущенную на бо́льшую сторону параллелограмма. | Смотреть видеоразбор |
Задание 4
Задание 5
Задание 6
Задание 7
7.1 | Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковой сигнал частотой 749 МГц. Приёмник регистрирует частоту сигнала, отражённого от дна океана. Скорость погружения батискафа (в м/с) и частоты связаны соотношением
v=c cdot frac{f-f_0}{f+f_0}
, где c = 1500 м/с – скорость звука в воде, f0 – частота испускаемого сигнала (в МГц), f — частота отражённого сигнала (в МГц). Найдите частоту отражённого сигнала (в МГц), если батискаф погружается со скоростью 2 м/с. |
Смотреть видеоразбор |
Задание 8
8.1 | Весной катер идёт против течения реки в 1 frac{2}{3} раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в 1 frac{1}{2} раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч). | Смотреть видеоразбор |
8.2 | Смешав 45%-ный и 97%-ный растворы кислоты и добавив 10 кг чистой воды, получили 62%-ный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50%-ного раствора той же кислоты, то получили бы 72%-ный раствор кислоты. Сколько килограммов 45%-ного раствора использовали для получения смеси? | Смотреть видеоразбор |
8.3 | Автомобиль, движущийся с постоянной скоростью 70 км/ч по прямому шоссе, обгоняет другой автомобиль, движущийся в ту же сторону с постоянной скоростью 40 км/ч. Каким будет расстояние (в километрах) между этими автомобилями через 15 минут после обгона? | Смотреть видеоразбор |
Задание 9
9.1 | На рисунке изображён график функции вида f(x) = ax^2+bx+c=0, где числа a, b, c — целые. Найдите значение f(-12). |
Смотреть видеоразбор |
Задание 10
10.1 | Симметричную игральную кость бросили 3 раза. Известно, что в сумме выпало 6 очков. Какова вероятность события «хотя бы раз выпало 3 очка»? | Смотреть видеоразбор |
10.2 | В городе 48% взрослого населения – мужчины. Пенсионеры составляют 12,6% взрослого населения, причём доля пенсионеров среди женщин равна 15%. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером». | Смотреть видеоразбор |
Задание 11
В прошлые годы мы его встречали в экзаменационных работах под пятым номером.
Данная опорная таблица по сути является кратким информационным конспектом. С её помощью вы легко сможете:
— Вспомнить какие виды уравнений входят в блок первого задания;
— Наглядно увидеть основные особенности каждого вида;
— Проанализировать процесс решения уравнений;
-На основание разобранного решения составить для себя «алгоритм» действий при решении простейших уравнений;
-Повторить основные темы из курса математики, которые используются при решении заданий первого блока.
Скачать опорный конспект