B этой статье:
Kак научиться решать задачи ЕГЭ по планиметрии? Пошаговая методика.
Полезные факты и классические схемы для решения задач по планиметрии.
Приемы и секреты решения задач по планиметрии.
«B учебнике нет, а на экзамене есть». На какие теоремы стоит обратить внимание.
Решения заданий № 16 Профильного ЕГЭ по математике.
Mногие старшеклассники считают, что могут обойтись без знания планиметрии. Что, занимаясь только алгеброй, смогут сдать ЕГЭ на высокие баллы и поступить в выбранный вуз.
Работает ли эта стратегия?
Oтвет преподавателей-экспертов: нет, не работает. На ЕГЭ вам может встретиться сложное неравенство (задание 15) и тем более — сложная «экономическая» задача. Так было в 2018 году. И всё, баллов фатально не хватает! Тех самых баллов, которые можно было легко получить за планиметрическую задачу, не хватает для поступления!
Cтоит учесть, что задачи вариантов ЕГЭ по планиметрии и стереометрии бывают намного проще, чем по алгебре.
И сейчас — самое главное о задаче 16 (Планиметрия).
1) Cамое важное — правильная методика подготовки. Не нужно начинать с реальных задач ЕГЭ. Cначала — теория. Cвойства геометрических фигур. Oпределения и теоремы. Bсе это вы найдете в нашем ЕГЭ-Cправочнике. Ничего лишнего там нет. Учите наизусть.
Лучшая тренировка на этом этапе — задания №3 и №6 из первой части ЕГЭ по математике
2) Задача 16 Профильного ЕГЭ по математике оценивается в 3 первичных балла и состоит из двух пунктов. Первый пункт — доказательство. Здесь нам помогут наши «домашние заготовки» — полезные факты, которые мы учимся доказывать задолго до экзамена. A на ЕГЭ остается только вспомнить и записать решение.
Bот список из 32 полезных фактов — и их доказательства. Да, это первый этап освоения планиметрии. Доказав все эти полезные факты, вы обнаружите, что пункт (а) задачи 16 перестал быть для вас проблемой.
3) Oказывается, многие задачи по планиметрии строятся по одной из так называемых классических схем. Учите их наизусть! И конечно, доказывайте! Лучше всего начинать именно с задач на доказательство.
4) Есть такие теоремы, которые вроде и входят в школьную программу — а попробуй их найди в учебнике. Например, теорема о секущей и касательной или свойство биссектрисы. A вы их знаете? Если нет — выучите.
5) Любая задача из варианта ЕГЭ решается без сложных формул. И если вы не помните теорему Чевы, теорему Mенелая и другую экзотику — вам это и не понадобится. Только то, что есть в нашем ЕГЭ-Cправочнике. Зато знать это надо наизусть.
6) Геометрия, конечно, это не алгебра, и готовых алгоритмов здесь намного меньше. Зато, когда вы отлично знаете все теоремы, формулы, свойства геометрических фигур, — у вас в голове выстраивается цепочка ассоциаций. Например, в условии задачи дан радиус вписанной окружности. B каких формулах он встречается? — Правильно, в теореме синусов и в одной из формул для площади треугольника.
7) Если вы вдруг не можете решить пункт (а), но решили пункт (б), вы получите за него один балл. A это лучше, чем ничего. Но вообще пункт (а), как правило, бывает простым. Иногда вопрос в пункте (а) очень простой. И это не только для того, чтобы вы получили «утешительный» балл. Помните, что пункт (а) часто содержит подсказку, идею для решения пункта (б). Так, например, было на Досрочном ЕГЭ. Простейший пункт (а), и в нем «спрятана» идея: в пункте (б) ищите вписанные в окружность четырехугольники.
Перейдем к практике. Разберем несколько реальных задач Профильного ЕГЭ под номером 16. Больше планиметрии — на интенсивах ЕГЭ-Cтудии и на Oнлайн-курсе.
Начнем с интересного приема. Бывает, что в задаче значимые отрезки пересекаются вот такой буквой Ж. Или вот такой буквой Х. Хорошо, если мы можем перестроить это Ж или Х в треугольник. Например, провести какие-нибудь отрезки, параллельные и равные (или пропорциональные) нашим.
1. (ЕГЭ — 2017)
Oснования трапеции равны 4 и 9, а её диагонали равны 5 и 12.
а) Докажите, что диагонали трапеции перпендикулярны.
б) Найдите высоту трапеции.
Посмотреть решение
Следующая задача — на применение одной из наших классических схем
2. B остроугольном треугольнике KMN проведены высоты KB и NA.
а) Докажите, что угол ABK равен углу ANK.
б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что и
.
Посмотреть решение
3. (ЕГЭ-2020, Демовариант).
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.
Посмотреть решение
B следующей задаче больше алгебры, чем геометрии. Действительно, бывает так, что планиметрическая задача быстро сводится к уравнению или системе уравнений.
4. Параллелограмм ABCD и окружность расположены так, что сторона AB касается окружности, CD является хордой, а стороны DA и BC пересекают окружность в точках P и Q соответственно.
а) Докажите, что около четырехугольника ABQP можно описать окружность.
б) Найдите длину отрезка DQ, если известно, что AP = a, BC = b, BQ = c.
Посмотреть решение
5. B прямоугольном треугольнике ABC точки M и N — середины гипотенузы AB и катета BC соответственно. Биссектриса угла BAC пересекает прямую MN в точке L.
а) Докажите, что треугольники AML и BLC подобны.
б) Найдите отношение площадей этих треугольников, если
Посмотреть решение
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 2, задача 16
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 4, задача 16
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 6, задача 16
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 8, задача 16
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 12, задача 16
Планиметрия. Стрим 10 марта. Разбор домашнего задания
Надеемся, что статья была для вас полезной. Что вы возьметесь за планиметрию и получите на экзамене необходимые баллы. Удачи вам!
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задание 16. Планиметрия u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
Новое 16 задание ЕГЭ 2022 по математике профильный уровень (планиметрия), треугольники и окружности, более 100 заданий, а также задачи с реального ЕГЭ по математике. Практикуемся и готовимся к экзамену!
- Треугольник и его элементы
- Многоугольники
- Отношение отрезков и площадей
- Окружности
- Окружности связанные с треугольником
- Окружности связанные с четырёхугольником
Треугольник и его элементы задачи ЕГЭ 2022 с ответами:
Задачи уровня А являются подготовительными для решения заданий 16 профильного ЕГЭ по теме «Треугольник и его элементы». Большая часть задач уровня В взята из реальных экзаменационных и диагностических работ прошлых лет.
Многоугольники задачи ЕГЭ 2022 с ответами:
Отношение отрезков и площадей задачи ЕГЭ 2022 с ответами:
Многие задачи этого раздела будут решаться с помощью теоремы о пропорциональных отрезках (обобщенной теоремы Фалеса), либо с помощью дополнительных построений, которые приводят к нескольким парам подобных треугольников. Рассмотрим примеры на эти дополнительные построения.
Окружности задачи ЕГЭ 2022 с ответами:
Окружности связанные с треугольником задачи ЕГЭ 2022 с ответами:
Окружности связанные с четырёхугольником задачи ЕГЭ 2022 с ответами:
1)В треугольнике ABC угол ABC тупой, H — точка пересечения продолжений высот, угол AHC равен 60 . а) Докажите, что угол ABC равен 120 . б) Найдите BH, если AB 7, BC 8.
2)На сторонах AC и BC треугольника ABC вне его построены квадраты ACDE и CBFG. Точка M — середина стороны AB. а) Докажите, что точка M равноудалена от центров квадратов. б) Найдите площадь треугольника DMG, если AC 6, BC 8, AB 10.
3)В прямоугольном треугольнике ABC точка M лежит на катете AC, а точка N лежит на продолжении катета BC за точку C, причём СM = BC и CN = AC. Отрезки CP и CQ — биссектрисы треугольников ACB и NCM соответственно. а) Докажите, что CP и СQ перпендикулярны. б) Найдите PQ, если BC 3, а AC 5.
4)Дана трапеция ABCD. Биссектриса угла BAD пересекает продолжение основания BC в точке K. а) Докажите, что треугольник ABK равнобедренный. б) Найдите биссектрису BM треугольника ABK, если AD = 10, BC = 2, AB = CD = 5.
5)Медианы треугольника ABC пересекаются в точке M. а) Докажите, что треугольники AMB, AMC и BMC равновелики. б) Известно, что треугольник ABC прямоугольный, а точка M удалена от катетов на расстояния 3 и 4. Найдите расстояние от этой точки до гипотенузы.
6)Дан треугольник ABC со сторонами AB = 4, BC = 6 и AC =8. а) Докажите, что прямая, проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне BC. б) Найдите длину биссектрисы треугольника ABC, проведённой из вершины A.
7)В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. Радиусы окружностей, вписанных в треугольники ACD и BCD, равны 0,6 и 0,8. а) Докажите подобие треугольников ACD и BCD. б) Найдите радиус окружности, вписанной в треугольник ABC
8)В равнобедренном треугольнике ABC AC — основание. На продолжении стороны CB за точку В отмечена точка D так, что угол CAD равен углу ABD. а) Докажите, что AB биссектриса угла CAD. б) Найдите длину отрезка AD, если боковая сторона треугольника АВС равна 5, а его основание равно 6.
9)На сторонах AB, BC и AC треугольника ABC отмечены точки C1, A1 и B1 соответственно, причем AC1 : C1B = 7 : 12, BA1 : A1C = 3 : 1, AB1 : B1C = 3 : 4. Отрезки BB1 и CC1 пересекаются в точке D. а) Докажите, что четырехугольник ADA1B1 – параллелограмм. б) Найдите CD, если отрезки AD и BC перпендикулярны, AC = 21, BC = 16.
10)Диагональ параллелограмма делит его угол на части в 30° и 45°. Найдите отношение сторон параллелограмма.
11)Сторона BC параллелограмма ABCD вдвое больше стороны AB. Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём MN = 12. Найдите стороны параллелограмма.
12)Найдите расстояние от центра ромба до его стороны, если острый угол ромба равен 30°, а сторона равна 4.
13)В прямоугольнике ABCD АВ = 60, ВС = 45. Сторона DC разделена на три равные части точками Е и F. Отрезки прямых, соединяющие вершины А и В с точками Е и F соответственно, продолжены до пересечения в точке М, лежащей вне прямоугольника. Найдите площадь треугольника EFM.
14)В прямоугольнике проведены биссектрисы двух углов, прилежащих к большей стороне. Определите, на какие части делится площадь прямоугольника этими биссектрисами, если стороны прямоугольника равны 2 и 4.
15)Найдите высоту равнобедренной трапеции, если ее диагональ перпендикулярна боковой стороне, а разность квадратов оснований равна 25.
16)Дана равнобедренная трапеция, средняя линия которой равна 9, площадь равна 54 и диагональ перпендикулярна боковой стороне. Найдите основания трапеции.
17)Меньшая боковая сторона прямоугольной трапеции равна 3, а большая образует угол 30° с одним из оснований. Найдите это основание, если на нѐм лежит точка пересечения биссектрис углов при другом основании.
18)Известно, что высота трапеции равна 15, а еѐ диагонали равны 17 и 113. Найдите площадь трапеции.
19)В трапеции длина средней линии равна 4, а углы при одном из оснований равны 40 и 50. Найдите длины оснований трапеции, если длина отрезка, соединяющего середины этих оснований, равна 1.
20)Средняя линия трапеции, равная 10, делит площадь трапеции в отношении 3 : 5. Найдите длины оснований трапеции.
21)Найдите диагональ и боковую сторону равнобедренной трапеции с основаниями 20 и 12, если известно, что центр еѐ описанной окружности лежит на большем основании.
22)Трапеция ABCD разделена прямой, параллельной еѐ основаниям AD и BC, на две равновеликие трапеции. Найдите отрезок этой прямой, заключѐнный между боковыми сторонами, если основания трапеции равны 6 и 8.
23)Высота CD треугольника ABC делит медиану BM в отношении 3 : 1, считая от вершины В. В каком отношении CD делит сторону АВ, считая от вершины А?
24)М и Р – середины смежных сторон AD и DC параллелограмма ABCD. MC и BP пересекаются в точке К. Найдите отношение BK : KP.
25)В треугольнике АВС А1 лежит на стороне ВС и ВА1 : А1С = 1 : 3, С1 – середина АВ. Найдите отношение АК : КА1, где К – точка пересечения АА1 и СС1.
26)В треугольнике ABC точка K лежит на стороне AC, причем AK : KC = 2 : 3. Точка M делит сторону AB на два отрезка, один из которых вдвое больше другого. Прямая, проходящая через точку M параллельно BC, пересекает прямую BK в точке P. Найти отношение BP : KP.
27)Точки M и N расположены на стороне BC треугольника ABC, а точка K — на стороне AC, причём BM : MN : NC = 1 : 1 : 2 и CK : AK = 1 : 4. Известно, что площадь треугольника ABC равна 20. Найдите площадь четырёхугольника AMNK.
28)Через точки M и N, делящие сторону AB треугольника ABC на три равные части, проведены прямые, параллельные стороне BC. Найдите площадь части треугольника, заключённой между этими прямыми, если площадь треугольника ABC равна 3.
29)Сторона треугольника равна 36. Прямая, параллельная этой стороне, делит площадь треугольника пополам. Найдите длину отрезка этой прямой, заключённого между сторонами треугольника.
30)Из середины основания треугольника площади 2 проведены прямые, параллельные боковым сторонам. Найдите площадь полученного таким образом параллелограмма.
31)Четырёхугольник разделён диагоналями на четыре треугольника. Площади трёх из них равны 10, 20 и 30, и каждая меньше площади четвёртого треугольника. Найдите площадь данного четырёхугольника.
32)В треугольнике ABC из точки E стороны BC проведена прямая, параллельная высоте BD и пересекающая сторону AC в точке F. Отрезок EF делит треугольник ABC на две равновеликие фигуры. Найдите EF, если BD = 6, AD : DC = 2 : 7.
Смотрите также на нашем сайте:
Задание №7 решу ЕГЭ 2022 профиль математика 11 класс с ответами
Задание №8 с ответами ЕГЭ 2022 профиль математика 11 класс
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Всё варианты 16 задания математика ЕГЭ Профиль 2022
Скачать задания в формате pdf.
Задания 13 ЕГЭ по математике профильного уровня 2022 год (планиметрия)
1) (28.03.2022 досрочная волна) В треугольник АВС вписана окружность, которая касается АВ в точке Р. Точка М – середина стороны АВ.
а) Докажите, что (MP = frac{{left| {,BC — AC,} right|}}{2}.)
б) Найдите углы треугольника АВС, если известно, что длина отрезка МР равна половине радиуса вписанной в треугольник АВС окружности, BC > AC, а отрезки МС и МА равны.
ОТВЕТ: (angle C = {90^ circ };,,angle A = arctgfrac{4}{3};,,angle B = arctgfrac{3}{4}.)
2) (28.03.2022 досрочная волна) Дана равнобедренная трапеция ABCD. На боковой стороне AB и большем основании AD взяты соответственно точки F и E так, что FE параллельно CD, а FC = ED.
а) Докажите, что (angle BCF = ,angle AFE;)
б) Найдите площадь трапеции ABCD, если ED = 3 BF, FE = 5 и площадь трапеции FCDE равна (14sqrt {35} .)
ОТВЕТ: (frac{{73sqrt {35} }}{4}.)
3) (28.03.2022 досрочная волна) На сторонах AB и BC треугольника ABC отмечены точки M и N так, что АМ : МВ = CN : NB = 1 : 2. Прямая MN касается окружности, вписанной в треугольник ABC в точке L.
a) Докажите, что AB+ BC= 5 AC.
б) Найдите радиус окружности, вписанной в треугольник ABC, если ML = 1 и LN = 3.
ОТВЕТ: (frac{{3sqrt 2 }}{2}.)
4) (02.06.2022 основная волна) В параллелограмме ABCD угол BAC вдвое больше угла CAD. Биссектриса угла BAC пересекает отрезок BC в точке L. На продолжении стороны CD за точку D выбрана такая точка E, что AE = CE.
а) Докажите, что (AL cdot BC = AB cdot AC;)
б) Найдите EL, если AC = 12, (tgangle BCA = frac{1}{4}.)
5) (02.06.2022 основная волна) На стороне BC параллелограмма ABCD выбрана точка M такая, что АМ = МС.
а) Докажите, что центр вписанной в треугольник AMD окружности лежит на диагонали AC.
б) Найдите радиус вписанной в треугольник AMD окружности, если АВ = 7, ВС = 21, а (angle DAB = ,{60^ circ }.)
ОТВЕТ: (frac{{sqrt 3 left( {34 — sqrt {127} } right)}}{{14}}.)
6) (02.06.2022 основная волна) На стороне острого угла с вершиной A отмечена точка B. Из точки B на биссектрису и другую сторону угла опущены перпендикуляры BC и BD соответственно.
а) Докажите, что (A{C^2} + C{D^2} = A{D^2} + D{B^2}.)
б) Прямые AC и BD пересекаются в точке T. Найдите отношение AT : TC, если (cos angle ,ABC = frac{3}{8}.)
7) (02.06.2022 основная волна) В остроугольном треугольнике ABC проведены высоты АА1, ВВ1 и СС1, которые пересекаются в точке H. Через точку С1 провели прямую, параллельную ВВ1. Данная прямая пересекает АА1 в точке К.
а) Докажите, что (AB cdot HK = {C_1}H cdot BC.)
б) Найдите отношение площадей треугольников АВС и C1HK, если известно, что АВ = 5, ВС = 6,
(AC = sqrt {31} .)
(02.06.2022 основная волна) Биссектриса BB1 и высота CC1 треугольника ABC пересекают описанную окружность в точках М и N. Известно, что (angle BCA = ,{85^ circ }) и (angle ABC = ,{40^ circ }.)
а) Докажите, что CN = BМ.
б) Пусть MN и ВС пересекаются в точке D. Найти площадь треугольника BDN, если его высота ВН равна 7.
9) (02.06.2022 основная волна) В квадрате ABCD точки M и N – середины сторон АВ и ВС, соответственно. Отрезки СМ и DN пересекаются в точке К.
а) Докажите, что (angle BKM = ,{45^ circ }.)
б) Найдите радиус окружности, описанной около треугольника АВК, если (AB = ,2sqrt {20} .)
ОТВЕТ: (frac{{10sqrt 2 }}{3}.)
10) (02.06.2022 основная волна) В треугольнике ABC на стороне BC отметили точку D так, что AB = BD. Биссектриса BF пересекает AD в точке E. Из точки C на прямую AD опущен перпендикуляр CK.
a) Докажите, что АВ: ВС= АЕ : ЕК.
б) Найдите отношение площади треугольника ABE к площади четырёхугольника CDEF, если известно, что BD : DC = 3 : 2.
11) (02.06.2022 основная волна) В треугольнике ABC точки M и N — середины сторон AB и BC соответственно. Известно, что около четырехугольника AMNC можно описать окружность.
а) Докажите, что треугольник ABC — равнобедренный.
б) На стороне AС отмечена точка F, такая что (angle AFB = ,{135^ circ }.) Отрезок BF пересекает отрезок MN в точке E. Найдите радиус окружности, описанной около четырёхугольника AMNC, если (angle ABC = ,{120^ circ }) и (EF = 6sqrt 2 .)
12) (27.06.2022 резервная волна) Точка D лежит на основании AC равнобедренного треугольника ABC. Точки I и J — центры окружностей, описанных около треугольников ABD и CBD соответственно.
а) Докажите, что прямые BI и DJ параллельны.
б) Найдите IJ, если AC = 16, (cos angle BDC = ,frac{1}{9}.)
ОТВЕТ: (frac{{18sqrt 5 }}{5}.)
13) (27.06.2022 резервная волна) Две окружности пересекаются в точках А и В. Общая касательная к этим окружностям касается их с точках С и D. Прямая АВ пересекает отрезок CD в точке М, центры окружностей лежат в разных полуплоскостях относительно прямой АВ, точка В лежит между точками А и М.
а) Докажите, что CM = MD.
б) Найдите расстояние между центрами данных окружностей, если их радиусы равны 1 и 3 соответственно, а точка В является серединой отрезка АМ.
ОТВЕТ: (frac{{8sqrt 2 }}{3}.)
14) (27.06.2022 резервная волна) В трапеции ABCD с основанием AD диагонали пересекаются в точке O, AD = 2 BC. Через вершину A проведена прямая параллельная диагонали BD, а через вершину D проведена прямая параллельная диагонали AC, и эти прямые пересекаются в точке E.
а) Докажите, что BO : AE = 1 : 2.
б) Прямые BE и CE пересекают сторону AD в точках M и N соответственно. Найдите MN, если AD = 10.
Планиметрия
Подобие треугольников
Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.
Число $k$ — коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)
- Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
- Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
Признаки подобия треугольников:
- Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
- Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
- Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Площади фигур
Площадь треугольника
- $S={a·h_a}/{2}$, где $h_a$ — высота, проведенная к стороне $а$
- $S={a·b·sinα}/{2}$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
- Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ — это полупериметр $p={a+b+c}/{2}$
- $S=p·r$, где $r$ — радиус вписанной окружности
- $S={a·b·c}/{4R}$, где $R$ — радиус описанной окружности
- Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ — катеты прямоугольного треугольника.
- Для равностороннего треугольника $S={a^2 √3}/{4}$, где $а$ — длина стороны.
Площади четырехугольников
Прямоугольник
$S=a·b$, где $а$ и $b$ — смежные стороны.
Ромб
$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ — диагонали ромба
$S=a^2·sinα$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.
Трапеция
$S={(a+b)·h}/{2}$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.
Квадрат
$S=a^2$, где $а$ — сторона квадрата.
Параллелограмм
$S=a·b·sinα$, где $а$ и $b$ — длины сторон параллелограмма, а $α$ — угол между этими сторонами.
Пропорциональные отрезки в прямоугольном треугольнике
В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:
Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.
$CD^2=DB·AD$
В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.
$CB^2=AB·DB$
$AC^2=AB·AD$
Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.
$AC·CB=AB·CD$
Метрические соотношения в окружности
1. Две касательные, проведенные к окружности из одной точки, равны, и центр окружности лежит на биссектрисе угла между ними.
2. Если хорды $АС$ и $BD$ пересекаются в некоторой точке $N$, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
$AN·NC=BN·ND$
Пример:
Хорды $АВ$ и $CD$ пересекаются в точке $Е$. Найдите $ЕD$, если $АЕ=16, ВЕ=9, СЕ=ED$.
Решение:
Если хорды $АВ$ и $СD$ пересекаются в некоторой точке $Е$, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
$AЕ·ЕВ=СЕ·ЕD$
Так как $СЕ=ED$, данное выражение можно записать в виде:
$ЕD^2=AЕ·ЕВ$
Подставим числовые значения
$ЕD^2=16·9$
$ЕD=√{16·9}=4·3=12$
Ответ: $12$
3. Если из одной точки к одной окружности проведены две секущие, то произведение первой секущей на ее внешнюю часть равно произведению второй секущей на свою внешнюю часть.
$АС·ВС=EC·DC$
4. Если из одной точки к окружности проведены секущая и касательная, то произведение секущей на ее внешнюю часть равно квадрату длины касательной.
$BD·СB=AB^2$
Вписанные и описанные окружности для четырехугольников.
1. Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.
$АВ+CD=BC+AD$
2. Если сумма противоположных углов четырехугольника равна $180°$, то только тогда около него можно описать окружность.
$∠В+∠D=180°$
$∠A+∠C=180°$
Вневписанные окружности
Вневписанной окружностью треугольника называется окружность, касающаяся одной из его сторон и продолжений двух других.
Для каждого треугольника существует три вневписанных окружности, которые расположены вне треугольника, центрами вневписанных окружностей являются точки пересечения биссектрис внешних углов треугольника.
Точки $О_1, О_2$ и $О_3$ – центры вневписанных окружностей.
Связь площади треугольника с радиусами вневписанных окружностей.
Введем обозначения:
$S$ — площадь треугольника;
$p$ — полупериметр треугольника;
$a, b, c$ — стороны треугольника;
$r_a, r_b, r_c$ — радиусы вневписанных окружностей касающиеся соответственно сторон $a, b$ и $c$;
Для данных обозначений справедливы равенства:
$r_a={S}/{p-a};$
$r_b={S}/{p-b};$
$r_c={S}/{p-c}.$
Пример:
В прямоугольном треугольнике $АВС$ угол $С=90°, АС=6, ВС=8$. Найдите радиус вневписанной окружности, касающейся гипотенузы.
Решение:
Радиус вневписанной окружности, касающейся стороны $АВ$ равен:
$r_{АВ}={S}/{p-АВ}$, где $S$ — площадь треугольника, $р$ — полупериметр треугольника.
Чтобы подставить в формулу данные, найдем сначала площадь треугольника и его полупериметр.
Площадь прямоугольного треугольника равна половине произведения катетов:
$S={АС·АВ}/{2}={6·8}/{2}=24$
Нам неизвестна гипотенуза, найдем ее по теореме Пифагора:
$АВ=√{АС^2+СВ^2}=√{6^2+8^2}=√{100}=10$
Зная все стороны, вычислим полупериметр:
$р={6+8+10}/{2}=12$
Теперь можем все данные подставить в формулу нахождения радиуса вневписанной окружности:
$r_{АВ}={S}/{p-АВ}={24}/{12-10}={24}/{2}=12$
Ответ: $12$
Биссектриса
Биссектриса – это линия, которая делит угол пополам.
Свойства биссектрисы:
1. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.
2. Если точка лежит на биссектрисе, то расстояния от неё до сторон угла равны.
$AD=DC$
3. Три биссектрисы в треугольнике пересекаются в одной точке, эта точка является центром вписанной в треугольник окружности.
4. Биссектриса угла в параллелограмме отсекает равнобедренный треугольник.
5. Биссектрисы смежных углов перпендикулярны.
6. В треугольнике биссектриса угла делит противоположную сторону на отрезки, отношение которых такое же, как отношение сторон треугольника, между которыми эта биссектриса прошла.
${AB}/{AC}={BA_1}/{A_1C}$
7. Для нахождения длины биссектрисы справедлива формула:
$АА_1=√{АВ·АС-ВА_1·А_1 С}$
Медиана
Медиана — это линия, проведенная из вершины треугольника к середине противоположной стороны.
Свойства медиан:
1. Медиана делит треугольник на два равновеликих треугольника, т.е. на два треугольника, у которых площади равны.
$S_1=S_2$
2. Медианы пересекаются в одной точке и этой точкой делятся в отношении два к одному, считая от вершины.
3. В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы и радиусу описанной около этого треугольника окружности.
4. Для нахождения длины медианы, проведенной к стороне «с», справедлива формула:
$М_с={√{2(а^2+b^2)-c^2}}/{2}$
Высота
Высота в треугольнике — это линия, проведенная из вершины треугольника к противоположной стороне под углом в 90 градусов.
$BB_1$ — высота
Свойства высот:
1. Три высоты (или их продолжения) пересекаются в одной точке.
2. При пересечении двух высот получаются подобные треугольники:
$∆АА_1 В~∆СС_1В;$
$∆АС_1 М~∆СМА1$
3. Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.
4. Высоты треугольника обратно пропорциональны его сторонам:
$h_a:h_b:h_c={1}/{a}:{1}/{b}:{1}/{c}$
Теорема синусов
Во всяком треугольнике стороны относятся как синусы противолежащих углов:
${a}/{sinα}={b}/{sinβ} ={c}/{sinγ} =2R$, где $R$ — радиус описанной около треугольника окружности.
Пример:
В треугольнике $АВС ВС=16, sin∠A={4}/{5}$. Найдите радиус окружности, описанной вокруг треугольника $АВС$.
Решение:
Воспользуемся теоремой синусов:
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной окружности
${ВС}/{sinA} =2R$
Далее подставим числовые данные и найдем $R$
${16·5}/{4}=2R$
$R={16·5}/{4·2}=10$
Ответ: $10$
Теорема косинусов
Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
$a^2=b^2+c^2-2·b·c·cosα.$
Планиметрия – профильный ЕГЭ по математике (оглавление)
Планиметрия плохо дается многим ученикам. На ЕГЭ эта задача №16 – одна из самых сложных задач и многие даже не пытаются за нее браться.
Весь секрет в том, что понимание планиметрии приходит не постепенно, а сразу. Вчера не получалось, а сегодня уже все понятно. Большинству просто не хватает терпения дойти до этого момента.
Надеемся, что ты не такой и не бросишь занятия на полпути. И вот тебе в помощь все, что нужно знать по планиметрии + несколько вебинаров для отработки навыков!
Планиметрия – часть 1. ЕГЭ №3 (бывшая №6)
Если вы плохо знаете планиметрию, начинайте с этой части и смотрите вебинар за вебинаром, ставьте на паузу и решайте задачи вместе с ведущим вебинаров Алексеем Шевчуком.
Помните, планиметрия требует нарешенности. Чтобы научиться решать любую задачу по планиметрии, нужно решать много задач.
Начните с самого начала.
Планиметрия – прямоугольный треугольник
Итак, прямоугольный треугольник, его свойства, площадь и углы прямоугольного треугольника, теорема Пифагора, тригонометрический функции острых углов, медиана и высота.
Планиметрия – равнобедренный треугольник и произвольный треугольник
В этом видео мы вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ.
Очень часто все “проблемы” с решением задач на равнобедренный треугольник решаются построением высоты. Также мы научимся решать и “обычные” треугольники.
Убедимся в достоверности утверждении из прошлого урока о прямоугольных треугольниках – очень часто решение задач сводится к нескольким прямоугольным треугольникам.
Вписанная окружность
В этом видео мы узнаем, что такое вписанная окружность, где находится её центр, и другие ее свойства. В какие фигуры можно, а в какие нельзя вписать окружность.
Научимся решать задачи на вписанную окружность – очень важный навык в понимании планиметрии.
Описанная окружность. Многоугольники
Вы этом видео вы узнаете, что такое описанная окружность, где находится её центр, и другие свойства. Около каких фигур можно, а вокруг каких нельзя описать окружность.
Также мы узнаем, что такое правильные многоугольники, и какие у них свойства; как они связаны с описанной окружностью.
Научимся решать задачи из ЕГЭ на описанную окружность и правильные многоугольники.
Что приблизит нас к умению решать любые задачи по планиметрии.
Теорема косинусов и синусов
Универсальный инструмент при решении треугольников – это теоремы косинусов и синусов.
Они подходят для любых треугольников, а не только для прямых (как теорема Пифагора).
А как мы уже знаем, почти любая задача в планиметрии сводится именно к треугольникам.
На этом уроке мы выучим сами теоремы и научимся применять их при решении задач первой части.
Планиметрия – часть 2. ЕГЭ №16
Эта часть планиметрии – для продвинутых, для тех, кто уже хорошо усвоил планиметрию из первой части.
Принцип тот же – смотрите вебинар за вебинаром и, самое главное, ставьте на паузу и решайте задачи.
Планиметрия. Подобие треугольников. Задачи на доказательство. ЕГЭ №16
Подобие треугольников. Это одна из самых сложных задачи планиметрии в профильном ЕГЭ. Полные 3 балла за эту задачу получают менее 1% выпускников!
Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства.
Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы.
В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение.
Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем.
Вы научитесь также применять подобие треугольников не только для доказательств, а и для расчётных задач.
Метод вспомогательной окружности. Из реального ЕГЭ 2016 года
Метод вспомогательной окружности – это очень классный метод, используемый в планиметрии но, к сожалению, он не всегда очевиден. Иногда в задаче нет даже намёка ни на какие окружности, но тем не менее, если догадаться её на рисунке достроить, решение становится в разы проще!
Как минимум, сразу же становятся равными друг другу очень неочевидные углы – те, которые опираются на одну дугу, но без окружности увидеть это было бы нереально сложно. Либо произведения отрезков хорд равны друг другу.
Это очень крутой и удобный метод – но нужно понимать, в каких ситуациях он применяется, ведь далеко не всегда нужно на и без того сложный рисунок лепить ещё и окружность.
Теорема Менелая и Чевы. “Секретный” метод решения самой сложной задачи ЕГЭ по математике
Задача №16. Планиметрия. Одна из самых сложных задач на ЕГЭ. Редко кто (менее 1% учеников!) набирает полные баллы по ней и поэтому грех не воспользоваться шорткатами и лайфхаками, если они есть.
Теорема Менелая и Чевы – один из таких шорткатов. Эти теоремы не входят в стандартную школьную программу, но они невероятно мощный инструмент! Они могут очень-очень упростить решение и сами по себе они красивые и легко запоминаются.
Итак, смотрите видео, учите теорему Менелая и Чевы, используйте ее на ЕГЭ.
Теорема Менелая и Чевы — её уже запретили, наконец, или нет?
Каждый год начинают ходить слухи, что теоремами Менелая и Чевы В ЭТОМ ГОДУ НЕЛЬЗЯ будет пользоваться на ЕГЭ. Правда ли это? Чтобы понять это, достаточно заглянуть в обычный…
Впрочем, смотрите это видео и узнаете, как понять, какими теоремами можно, а какими нельзя пользоваться. А также, на этом вебе мы разберём, что это за теоремы такие, и как ими пользоваться.
Вы узнаете, насколько они крутые и мощные, и насколько экономят нам время в некоторых задачах.
Планиметрия Статград март 2021
Задача №16 из мартовского статграда на планиметрию ничем не удивляет: снова окружность и пропорциональные отрезки в ней, прямоугольные треугольники, вот это всё.
Скучно… Раз-два, и ответ готов!
Но погодите-ка, а почему у нас с вами ответ получился разный? И вроде бы оба делаем всё правильно…
На уроках нашего курса я рассказывал о таких задачах, но их уже давненько не попадалось на ЕГЭ, и все уж думали, что ушла эпоха. Конечно, никакого парадокса в этой задаче нет, нужно всего лишь (ха-ха) быть очень внимательными:)
Смотрите видео, и узнаете, в чём же особенность этой задачи, как её правильно решать и оформлять, а также – как ничего не упустить на экзамене и не потерять баллы!
Планиметрия. Окружности. Задача из олимпиады Физтеха 2020
Планиметрия и окружности! Куда же деться от них в 16 задаче на ЕГЭ?
Те, кто ходил на наш курс подготовки, посвященный 16 задаче, знают, что окружности в задачах на планиметрию попадаются чаще всего.
Иногда вписанные. Иногда описанные. С разными вписанными или описанными фигурами. Иногда одна окружность . Иногда две. Они касаются друг друга или пересекаются друг с другом. Никуда не деться от окружностей – остается только научится их решать и получать удовольствие от красивых задач!
В этом видео мы разберём, что бы вы думали? Задачу 16 из ЕГЭ?
Нет! Пойдём дальше – разберём задачу из олимпиады Физтеха прошлого года.
Стойте, не разбегайтесь! Олимпиады далеко не всегда бывают сложными (особенно, если вы прошли наш курс по 16-й задаче). Эта задача вполне себе ЕГЭ-шного уровня. Про окружности и прямоугольные треугольники.
Готовьтесь и “разминайте” свои теоремы Пифагора, теорему синусов и прочих косинусов.
Разбор задачи №16 (б) из реального варианта ЕГЭ 2021 по профильной математике
Продолжение предыдущего видео. Разбор части (б):
Теперь слово вам…
Как вам наш гид по планиметрии? Что нового вы узнали? Что еще хотите узнать?
Как вам теорема Менелая и Чевы? Один из моих знакомых сказал: “В школе ее от нас утаивали!”. Шутка, в которой есть доля… шутки.
Готовьтесь к планиметрии и забирайте свои 3 балла на ЕГЭ.
Самые бюджетные курсы по подготовке к ЕГЭ на 90+
Алексей Шевчук – ведущий мини-групп
математика, информатика, физика
+7 (905) 541-39-06 – WhatsApp/Телеграм для записи
alexei.shevchuk@youclever.org – email для записи
- тысячи учеников, поступивших в лучшие ВУЗы страны
- автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
- закончил МФТИ, преподавал на малом физтехе;
- репетиторский стаж – c 2003 года;
- в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов – как обычно дурацкая ошибка:);
- отзыв на Профи.ру: “Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами”.
За это задание ты можешь получить 1 балл. На решение дается около 3 минут. Уровень сложности: базовый.
Средний процент выполнения: 95%
Ответом к заданию 3 по математике (профильной) может быть целое число или конечная десятичная дробь.
Разбор сложных заданий в тг-канале
Задачи для практики
Задача 1
Перед началом первого тура чемпионата по спортивным нардам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует $56$ игроков, среди которых $12$ спортсменов из России, в том числе Евгений Победкин. Найдите вероятность того, что в первом туре Евгений Победкин будет играть с каким-либо игроком из России.
Решение
Будем считать случайным экспериментом выбор соперника Евгения Победкина. Этот эксперимент имеет $56-1 = 55$ равновозможных исходов (сам с собой он играть не может!). При этом $12 — 1 = 11$ исходов благо приятствуют событию «Евгений Победкин будет играть со спортсменом из России» (так как есть $11$ спортсменов из России, не считая самого Евгения Победкина). По определению искомая вероятность равна ${11}/{55} = 0.2$.
Ответ: 0.2
Задача 2
Перед началом первого тура чемпионата по настольному теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует $76$ спортсменов, среди которых $46$ спортсменов из России, в том числе Григорий Соколенко. Найдите вероятность того, что в первом туре Григорий Соколенко будет играть с каким-либо теннисистом из России.
Решение
Будем считать случайным экспериментом выбор соперника Григория Соколенко. Этот эксперимент имеет $76-1=75$ равновозможных исходов (сам с собой он играть не может!). При этом $46-1=45$ исходов благоприятствуют событию «Григорий Соколенко будет играть со спортсменом из России» (так как есть $45$ спортсменов из России, не считая самого Григория Соколенко). По определению, искомая вероятность равна ${45} / {75}=0{,}6$.
Ответ: 0.6
Задача 3
Вероятность того, что новая электрическая кофемашина прослужит больше года, равна $0{,}92$. Вероятность того, что она прослужит больше двух лет, равна $0{,}85$. Найдите вероятность того, что она прослужит меньше двух лет, но больше года.
Решение
Заметим, что из событий «кофемашина прослужит меньше года», «кофемашина прослужит от 1 до 2 лет» и «кофемашина прослужит больше двух лет» произойдёт обязательно ровно одно, то есть, говоря математическим языком, они попарно несовместны, а их объединение — достоверное событие. Следовательно, сумма вероятностей этих событий равна 1.
При этом события «кофемашина прослужит меньше года» и «кофемашина прослужит больше года» противоположны, поэтому вероятность события «кофемашина прослужит меньше года» равна 1 — 0.92 = 0.08. Заполним таблицу.
Событие | Прослужит меньше года | Прослужит от 1 до 2 лет | Прослужит больше двух лет |
Вероятность | 0.08 | ? | 0.85 |
Отсюда искомая вероятность равна 1 — 0.08 — 0.85 = 0.07.
Ответ: 0.07
Задача 4
В некотором городе из $5000$ появившихся на свет младенцев $2075$ мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до сотых.
Решение
Из каждых $5000$ появившихся на свет младенцев девочек $5000 — 2075 = 2925$. По определению искомая частота равна ${2925}/{5000} = 0.585 ≈ 0.59$.
Ответ: 0.59
Задача 5
На экзамене по физике студент отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Элект-
ричество», равна $0{,}3$. Вероятность того, что это вопрос по теме «Механика», равна $0{,}42$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене студенту достанется вопрос по одной из этих двух тем.
Решение
Из условия следует, что события A = «достанется вопрос по теме Электричество» и B = «достанется вопрос по теме Механика» несовместны. Действительно, нет билетов, относящихся к обоим этим темам одновременно. Событие «достанется вопрос по одной из этих двух тем» — это объединение событий A и B (A $∪$ B). По формуле вероятности объединения несовместных событий получим, что искомая вероятность равна P(A $∪$ B) = P(A) + P(B) = 0.3 + 0.42 = 0.72.
Ответ: 0.72
Задача 6
При производстве в среднем на каждые $468$ исправных телефонов приходится $32$ неисправных. Найдите вероятность того, что случайно выбранный телефон окажется неисправным.
Решение
Из условия следует, что в среднем из каждых $468 + 32 = 500$ телефонов $32$ неисправных. По определению искомая вероятность равна ${32}/{500} = 0.064$.
Ответ: 0.064
Задача 7
Завод выпускает съёмные жёсткие диски. В среднем $15$ дисков из $300$ имеют скрытые дефекты. Найдите вероятность того, что купленный диск окажется без дефектов.
Решение
По определению вероятность покупки диска с дефектом равна ${15}/{300} = 0.05$. Тогда по формуле вероятности противоположного события вероятность купить диск без дефекта равна $1 — 0.05 = 0.95$.
Ответ: 0.95
Задача 8
Фабрика выпускает туфли. В среднем $12$ пар туфель из $200$ пар имеют скрытые дефекты. Найдите вероятность того, что купленная пара туфель окажется без дефектов.
Решение
Из условия следует, что в среднем из каждых $200$ пар $200 — 12 = 188$ не имеют дефектов. Тогда искомая вероятность равна ${188}/{200} = 0.94$.
Ответ: 0.94
Задача 9
В чемпионате мира участвуют $16$ команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: $1$, $1$, $1$, $1$, $2$, $2$, $2$, $2$, $3$, $3$, $3$, $3$, $4$, $4$, $4$, $4$. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда «Плутон», участвующая в чемпионате, окажется во второй группе?
Решение
Будем считать, что случайный эксперимент заключается в том, что капитан команды «Плутон» тянет карточку с номером группы. У этого эксперимента $16$ равновозможных исходов (по числу карточек). Событию «Команда „ Плутон“ окажется во второй группе» благоприятствуют $4$ исхода (количество карточек с номером $2$). По определению вероятности искомая вероятность равна ${4} / {16}=0{,}25$.
Ответ: 0.25
Задача 10
На конференцию приехали $7$ учёных из Китая, $5$ — из России и $8$ — из Египта. Каждый из них делает на конференции один доклад. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад учёного из России.
Решение
Будем считать, что случайный эксперимент заключается в том, что выбирается учёный, который будет выступать восьмым. Всего существует $20$ равновозможных исходов ($7+5+8=20$ учёных, все имеют равные шансы выступить восьмыми). Событию «Восьмым будет выступать учёный из России» благоприятствуют $5$ исходов. По определению искомая вероятность равна ${5}/{20} = {1}/{4} = 0.25$.
Ответ: 0.25
Задача 11
В чемпионате по спортивной гимнастике участвуют $40$ спортсменов: $16$ — из России, $9$ — из Франции, остальные — из Беларуси. Порядок, в котором выступают гимнасты, определяется жребием. Найдите вероятность того, что спортсмен, выступающий первым, окажется из Беларуси.
Решение
Из Беларуси $40-16-9 = 15$ спортсменов. Будем считать, что случайный эксперимент заключается в том, что выбирается спортсмен, который будет выступать первым. Всего существует $40$ равновозможных исходов ($40$ спортсменов, все имеют равные шансы выступить первыми). Событию Первым будет выступать спортсмен из Беларуси благоприятствуют $15$ исходов. По определению искомая вероятность равна ${15}/{40} = {3}/{8} = 0.375$.
Ответ: 0.375
Задача 12
В кармане у Валерия было пять конфет — «Птичье молоко», «Ромашка», «Черноморочка», «Мишка косолапый» и «Ласточка», а также ключи от квартиры. Вынимая ключи, Валерий случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Ромашка».
Решение
Валерий мог с одинаковой вероятностью выронить каждую из пяти конфет, значит, искомая вероятность равна ${1}/{5} = 0.2$.
Ответ: 0.2
Задача 13
Света, Марина, Оля и Ксюша бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должна будет Света.
Решение
Жребий имеет $4$ равновозможных исхода (все девочки имеют равные шансы начинать игру). Значит, вероятность события «Игру будет начинать Света» равна ${1} / {4}=0{,}25$.
Ответ: 0.25