Органоиды (органеллы) клетки — специализированные структуры клетки, выполняющие различные жизненно необходимые
функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции
дыхания, выделения, пищеварения и многие другие.
Органоиды клетки подразделяются на:
- Немембранные — рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
- Одномембранные — ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
- Двумембранные — пластиды, митохондрии
Ядро не включается в понятие «органоиды клетки», является структурой клетки, однако также будет рассмотрено нами в этой статье.
Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо
упомянуть о том, без чего вообще не существует клетки — о клеточной мембране. Клеточная мембрана ограничивает клетку
от окружающего мира и формирует ее внутреннюю среду.
Клеточная мембрана (оболочка)
Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную,
жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз У клеток животных имеется
только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.
Клеточная мембрана представляет собой билипидный слой (лат. bi — двойной + греч. lipos — жир), который пронизывают молекулы
белков.
Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а
гидрофильные «головки» смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично — погруженные белки,
имеются также поверхностно лежащие белки — периферические.
Белки принимают участие в:
- Поддержании постоянства структуры мембраны
- Рецепции сигналов из окружающей среды (химического раздражения)
- Транспорте веществ через мембрану
- Ускорении (катализе) реакций, которые ассоциированы с мембраной
Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее.
«Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует
в избирательном транспорте веществ через мембрану.
Теперь вы знаете, что гликокаликс — надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных
сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется
только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны
регулируют жизнедеятельность клеток.
Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к
ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов
нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный
иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.
Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают
его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые
по мере необходимости открываются и закрываются Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой:
через мембрану вещества поступают в клетку и удаляются из нее.
Подведем итоги. Клеточная мембрана выполняет ряд важнейших функций:
- Разделительная (барьерная) — образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
- Поддержание обмена веществ между внешней средой и цитоплазмой
- Транспортная
-
Пассивный — часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии
или облегченной (с участием белка-переносчика) диффузии. - Активный
Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности — мочевина
— удаляются из клетки во внешнюю среду.
Тесно связана с обменом веществ, однако здесь мне особенно хочется подчеркнуть варианты транспорта веществ через клетку.
Выделяется два вида транспорта:
Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O,
CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.
Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и
энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы
натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.
Внутрь клетки крупные молекулы попадают путем эндоцитоза (греч. endo — внутрь) двумя путями:
- Фагоцитоз (греч. phago — ем + cytos — клетка) — поглощение твердых пищевых частиц и бактерий фагоцитами
- Пиноцитоз (греч. pino — пью) — поглощение клеткой жидкости, захват жидкости клеточной поверхностью
Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы
нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.
В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь
клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное
пищеварение.
Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к
мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω — вне, снаружи). Таким образом, процессы экзоцитоза и
эндоцитоза противоположны.
Клеточная стенка
Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует.
Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму.
Клеточная стенка бактерий состоит из полимера муреина, у грибов — из хитина, у растений — из целлюлозы.
Цитоплазма
Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме
происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты — удалить из клетки.
Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.
Прокариоты и эукариоты
Прокариоты (греч. πρό — перед и κάρυον — ядро) или доядерные — одноклеточные организмы, не обладающие в отличие от
эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды.
Их генетический материал представлен в виде кольцевой молекулы ДНК — нуклеоида (нуклеоид — ДНК–содержащая зона клетки прокариот). К прокариотам относятся бактерии, в их числе цианобактерии (цианобактерий по-другому называют — сине-зеленые водоросли).
Эукариоты (греч. εὖ — хорошо + κάρυον — ядро) или ядерные — домен живых организмов, клетки которых содержат оформленное
ядро. Растения, животные, грибы — относятся к эукариотам.
Немембранные органоиды
- Рибосома
- Микротрубочки и микрофиламенты
- Клеточный центр (центросома, от греч. soma — тело)
- Реснички и жгутики
Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа.
Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая
в ядрышке.
Запомните ассоциацию: «Рибосома — фабрика белка». Именно здесь в ходе матричного биосинтеза — трансляции, с которой
подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок — последовательность
соединенных аминокислот в заданном иРНК порядке.
Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают
определенную форму клетки, участвуют во внутриклеточном транспорте и процессе деления путем образования нитей веретена деления. Микротрубочки
также образуют основу органоидов движения: жгутиков (у бактерий жгутик состоит из сократительного белка — флагеллина) и ресничек.
Микрофиламенты — тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме,
служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.
Этот органоид характерен только для животной клетки, в клетках низших грибов (мукор) и высших растений отсутствует. Клеточный
центр состоит из 9 триплетов микротрубочек (триплет — три соединенных вместе). Участвует в образовании нитей веретена деления,
располагается на полюсах клетки.
Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек.
Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.
Одномембранные органоиды
- Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum — сеть)
- Комплекс (аппарат) Гольджи
- Лизосома (греч. lisis — растворение + soma — тело)
- Пероксисомы (лат. per — сверх, греч. oxys — кислый и soma — тело)
- Вакуоли
ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части
(компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу,
что нарушит процессы жизнедеятельности.
Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними
имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая
ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).
Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается
вокруг ядра клетки, внешне напоминает стопку блинов. Это — «клеточный склад». В нем запасаются жиры и углеводы, с
которыми здесь происходят химические видоизменения.
Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они
изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках
эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.
В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.
Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) — липазы, протеазы, фосфатазы.
Лизосому можно ассоциировать с «клеточным желудком».
Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце — вторичная лизосома с непереваренными остатками, которые удаляются из клетки.
Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком.
В норме у каждой клетки жизненный цикл заканчивается апоптозом — запрограммированным процессом клеточной гибели.
В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что
нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.
Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2
(пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы
к серьезным повреждениям клетки.
Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных — сократительные
вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором
содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.
Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление,
придают клетке форму.
Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют
вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные
органоиды на периферию.
Двумембранные органоиды
- Митохондрия
- Пластиды (др.-греч. πλαστός — вылепленный)
- Хлоропласт (греч. chlōros — зелёный)
- Хромопласты (греч. chromos – краска)
- Лейкопласты (др.-греч. λευκός — белый )
Органоид палочковидной формы. Митохондрию можно сравнить с «энергетической станцией». Если в цитоплазме происходит
анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный — аэробный этап (кислородный). В
результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы)
получаются 36 молекул АТФ.
Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь — кристы, на которых имеется
большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена
матриксом.
Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК — нуклеоида (ДНК–содержащая зона клетки прокариот), и рибосом. То есть
митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.
В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были
самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.
Митохондрий особенно много в клетках мышц, в том числе — в сердечной мышечной ткани. Эти клетки выполняют активную работу и
нуждаются в большом количестве энергии.
Двумембранные органоиды, встречающиеся только в клетках высших растений, водорослей и некоторых простейших. У
подавляющего большинства животных пластиды отсутствуют. Подразделяются на три типа:
Получил свое название за счет содержащегося в нем зеленого пигмента — хлорофилла (греч. chloros — зеленый
и phyllon — лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки — граны. Внутреннее
пространство между тилакоидами и мембраной называется стромой.
Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая
(светонезависимая) фаза — в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении
фотосинтеза в дальнейшем.
Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.
Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает
красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.
Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал,
в них активируется биосинтез каротиноидов.
Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается
крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать
процесс фотосинтеза.
Ядро («ядро» по лат. — nucleus, по греч. — karyon)
Важнейшая структура эукариотической клетки — оформленное ядро, которое у прокариот отсутствует. Внутренняя часть
ядра представлена кариоплазмой, в которой расположен хроматин — комплекс ДНК, РНК и белков, и одно или несколько
ядрышек.
Ядрышко — место в ядре, где активно идет процесс матричного биосинтеза — транскрипция, с которым мы познакомимся
подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество
ядрышек или не найти ни одного.
Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение
между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала
дочерним клеткам.
Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы
ДНК, связанные с белками.
Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать
вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы — во время деления, спирализованное ДНК), если же клетка не
делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин — деспирализованное ДНК).
Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом
называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.
Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна — трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Клеточная (плазматическая) мембрана (плазмалемма)
Клеточные мембраны играют важную роль в клетках. Они отделяют клеточное содержимое от внешней среды, регулируют обмен между клеткой и средой (поступление в клетку питательных веществ и удаление из нее «отходов») и делят клетки на отсеки (компартменты), предназначенные для тех или иных метаболических путей, например для фотосинтеза или аэробного дыхания. Некоторые химические реакции, в частности световые реакции фотосинтеза в хлоропластах, протекают на самих мембранах. Здесь же на мембранах располагаются и рецепторные участки для распознавания гормонов, нейромедиаторов или других химических веществ, поступающих из окружающей среды или из других частей самого организма.
Просмотров: 9553
Плазматическая мембрана плазматическая мембрана
Скачать
Структура клеточной мембраны плазматическая мембрана
Скачать
Строение плазматической мембраны клетки
Скачать
Схема строения плазматической мембраны
Скачать
Плазматическая мембрана плазмалемма
Скачать
Схема строения плазматической мембраны клетки
Скачать
Плазматическая мембрана строение органоида
Скачать
Структура наружной клеточной мембраны
Скачать
Структура клеточной мембраны плазматическая мембрана
Скачать
Плазматическая мембрана эукариот
Скачать
Плазматическая мембрана фосфолипиды белки
Скачать
Наружная клеточная мембрана схематическое изображение
Скачать
Клеточная мембрана рисунок в клетке
Скачать
Строение клеточной мембраны рисунок
Скачать
Схема плазматической мембраны клетки
Скачать
Клеточная плазматическая мембрана
Скачать
Плазматическая мембрана клетки растений
Скачать
Клеточная оболочка мембрана строение
Скачать
Схема строения плазматической мембраны
Скачать
Плазматическая мембрана клетки строение и функции
Скачать
Строение плазматической мембраны клетки рисунок
Скачать
Наружная плазматическая мембрана клетки
Скачать
Строение плазматической мембраны ЕГЭ биология
Схематический рисунок клеточной мембраны
Скачать
Схема строения мембраны клетки
Скачать
Плазматическая мембрана гликокаликс
Скачать
Клеточная мембрана строение и функции
Скачать
Структура плазматической мембраны
Скачать
Структура клетки плазматическая мембрана
Скачать
Схема строения плазматической мембраны
Скачать
Цитоплазматическая мембрана гликокаликс
Скачать
Клеточная мембрана плазмалемма
Скачать
Функции плазматической мембраны
Скачать
Схема плазматической мембраны клетки
Скачать
Схема строения плазматической мембраны
Скачать
Схема строения плазматической мембраны клетки
Скачать
Строение плазматической мембраны клетки
Скачать
Схема строения плазматической мембраны
Скачать
Клеточная плазматическая мембрана
Скачать
Строение плазматической мембраны клетки рисунок
Скачать
Структура клеточной мембраны плазматическая мембрана
Скачать
Схема строения плазматической мембраны
Скачать
Плазматическая и цитоплазматическая мембрана
Скачать
Рисунок плазматической мембраны клетки
Скачать
Клеточная мембрана гликокаликс
Клеточная цитоплазматическая мембрана рисунок
Скачать
Клеточная мембрана гликокаликс
Скачать
Рисунок плазматической мембраны клетки
Плазматическая мембрана плазмалемма
в условии
в решении
в тексте к заданию
в атрибутах
Категория:
Атрибут:
Всего: 63 1–20 | 21–40 | 41–60 | 61–63
Добавить в вариант
Все перечисленные ниже признаки, кроме трёх, используют для описания плазматической мембраны растительной клетки. Определите три признака «выпадающих» из общего списка и запишите в таблицу цифры, под которыми они указаны.
1) участвует в синтезе липидов
2) состоит из билипидного слоя
3) содержит полисахарид муреин
4) имеет «шубу» из олигосахаридов, гликопротеинов и гликолипидов
5) способна к активному транспорту веществ
6) выполняет барьерную функцию
Установите соответствие между особенностями строения органоидов клетки и органоидами: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ОСОБЕННОСТИ СТРОЕНИЯ ОРГАНОИДОВ
А) основу составляет липидный бислой
Б) имеет двумембранную пористую оболочку
В) содержит кариоплазму
Г) в органоиде множество ферментов окислительного цикла
Д) содержит кольцевую хромосому
Е) осуществляет фаго- и пиноцитоз у животных
ОРГАНОИДЫ
1) клеточная мембрана
2) ядро
3) митохондрия
Запишите в таблицу выбранные цифры под соответствующими буквами
A | Б | В | Г | Д | Е |
Установите соответствие между процессами и органоидом, в котором они происходят.
ФУНКЦИЯ
А) избирательная проницаемость
Б) активный транспорт
В) поддержание формы клетки
Г) придаёт жёсткость клетке
Д) способность к фагоцитозу
СТРУКТУРНЫЙ КОМПОНЕНТ
1) клеточная мембрана
2) клеточная стенка
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д |
Источник: Банк заданий ФИПИ
Клетки эукариот, в отличие от клеток прокариот, имеют
1) плазматическую мембрану
2) оболочку
3) рибосомы
4) хлоропласты
Прокариотическая клетка, в отличие от эукариотической, содержит
1) плазматическую мембрану
2) одну кольцевую молекулу ДНК
4) рибосомы и включения
Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Центр, Урал. Вариант 3.
Найдите ошибки в приведённом тексте. Укажите номера предложений, в которых они допущены, исправьте их.
1. Пластиды встречаются в клетках растительных организмов и некоторых бактерий и животных, способных как к гетеротрофному, так и автотрофному питанию. 2. Хлоропласты, так же как и лизосомы, — двумембранные, полуавтономные органоиды клетки. 3. Строма — внутренняя мембрана хлоропласта, имеет многочисленные выросты. 4. В строму погружены мембранные структуры — тилакоиды. 5. Они уложены стопками в виде крист. 6. На мембранах тилакоидов протекают реакции световой фазы фотосинтеза, а в строме хлоропласта — реакции темновой фазы.
Найдите ошибки в приведённом тексте, исправьте их, укажите номера предложений, в которых они сделаны, запишите эти предложения без ошибок.
1. Все живые организмы — животные, растения, грибы, бактерии, вирусы — состоят из клеток.
2. Любые клетки имеют плазматическую мембрану.
3. Снаружи от мембраны у клеток животных организмов имеется жесткая клеточная стенка.
4. Во всех клетках имеется ядро.
5. В клеточном ядре находится генетический материал клетки — молекулы ДНК.
Установите соответствие между функциями клеточных структур и структурами, изображёнными на рисунке: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ФУНКЦИИ
А) осуществляет активный транспорт веществ
Б) изолирует клетку от окружающей среды
В) обеспечивает избирательную проницаемость веществ
Г) образует секреторные пузырьки
Д) распределяет вещества клетки по органеллам
Е) участвует в образовании лизосом
СТРУКТУРЫ
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
A | Б | В | Г | Д | Е |
В состав биологических мембран не входят
Определите клеточную структуру, модель строения которой изображена на рисунке. Молекулы какого вещества обозначены цифрой 1? Какова его основная функция в этой структуре? Какая особенность строения и какие свойства молекул этого вещества позволяют ему выполнять эту функцию? Как расположены молекулы данного вещества в представленной клеточной структуре?
Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи
Задания Д2 № 804
Какова роль цитоплазмы в растительной клетке
1) защищает содержимое клетки от неблагоприятных условий
2) обеспечивает избирательную проницаемость веществ
3) осуществляет связь между ядром и органоидами
4) обеспечивает поступление в клетку веществ из окружающей среды
Что произойдет с клетками эпителиальной ткани, если их поместить в дистиллированную воду? Ответ обоснуйте.
Для сохранения клеток эпителиальной ткани их поместили в стерильную дистиллированную воду. Однако через некоторое время все клетки разрушились. Объясните, почему?
Из белка и нуклеиновой кислоты состоят
Какие процессы изображены на рисунках А и Б? Назовите структуру клетки, участвующую в этих процессах. Какие преобразования в клетке далее произойдут с бактерией на рисунке А?
Раздел: Основы цитологии
Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Центр, Урал. Вариант 2., ЕГЭ по биологии 30.05.2013. Основная волна. Центр, Урал. Вариант 6., Демонстрационная версия ЕГЭ—2014 по биологии., Демонстрационная версия ЕГЭ—2017 по биологии
На каком рисунке изображён органоид, в котором происходит окисление органических веществ до углекислого газа и воды?
Источник: Демонстрационная версия ЕГЭ—2016 по биологии
На электронных микрофотографиях нейронов было обнаружено большое количество мембран комплекса Гольджи. Объясните это явление, используя знания о функциях комплекса Гольджи в клетке.
Источник: ЕГЭ по биологии 14.06.2016. Основная волна. Вариант 22
К крови прилили такой же объем раствора поваренной соли с концентрацией 0,1%.
Что произойдет с эритроцитами.
Источник: ЕГЭ- 2017
Найдите три ошибки в приведенном тексте «Растительная клетка». Укажите номера предложений, в которых сделаны ошибки, исправьте их. Дайте правильную формулировку.
(1)Растения и животные отличаются друг от друга, их относят к разным царствам организмов. (2)В растительной клетке, в отличие от животной, имеются клеточная стенка, пластиды, крупные вакуоли с клеточным соком. (3)Прочная клеточная стенка растений состоит из липидов и белков. (4)В растительной клетке может протекать процесс фотосинтеза. (5)В семенах растений часто запасаются гликоген и жиры, реже белки. (6)Эти вещества расходуются на прорастание семени растения. (7)В семенах бобовых растений в больших количествах накапливаются жиры.
Источник: ЕГЭ — 2018
Установите соответствие между характеристиками и органоидами клетки, обозначенными цифрами на схеме: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ХАРАКТЕРИСТИКИ
А) Синтез углеводов и липидов
Б) Осуществляет модификацию и выделение белков
В) Двумембранный органоид
Г) Участвует в формировании межклеточных контактов
Д) Способствует образованию лизосом
Е) Может образовывать гликокаликс
Запишите в ответ цифры 1-4 из столбца ОРГАНОИДЫ, соответствующие номерам на схеме. Расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
Показать
1
Каким номером на рисунке обозначен органоид, относящийся к цитоскелету клетки?
2
Установите соответствие между характеристиками и органоидами клетки, обозначенными цифрами на схеме: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ХАРАКТЕРИСТИКИ
А) Построены из белка тубулина
Б) Содержат гидролитические ферменты
В) Имеют в своём составе ДНК
Г) Участвуют в синтезе белка
Д) Формируют веретено деления
Е) Состоят из РНК и белка
ОРГАНОИДЫ
1) (2)
2) (4)
3) (9)
4) (10)
Запишите в ответ цифры 1-4 из столбца ОРГАНОИДЫ, соответствующие номерам на схеме. Расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
Всего: 63 1–20 | 21–40 | 41–60 | 61–63
Цитология. Органоиды эукариотических клеток
Эукариотические клетки
В начале изучения цитологии должно быть ясно, что эукариотические клетки имеют более сложную структуру, чем прокариотические клетки. Органеллы позволяют одновременно выполнять в клетке различные функции. Прежде чем обсуждать функции органелл внутри эукариотической клетки, давайте сначала рассмотрим два важных компонента клетки: плазматическую мембрану и цитоплазму.
Рисунок 1: На этом рисунке показаны типичные животная и растительная клетки.
Плазматическая мембрана
Подобно прокариотам, эукариотические клетки имеют плазматическую мембрану (рис. 2), состоящую из фосфолипидного бислоя со встроенными белками, которые отделяют внутреннее содержимое клетки от окружающей среды.
Фосфолипид — это молекула липида, состоящая из двух цепей жирных кислот и фосфатной группы. Плазматическая мембрана регулирует прохождение некоторых веществ, таких как органические молекулы, ионы и вода, предотвращая прохождение одних для поддержания внутренних условий, при этом активно вводя или удаляя другие. Другие соединения пассивно перемещаются через мембрану.
Рисунок 2. Плазматическая мембрана представляет собой фосфолипидный бислой с внедренными белками. Существуют и другие компоненты, такие как холестерин и углеводы, которые могут быть обнаружены в мембране в дополнение к фосфолипидам и белку.
Плазматические мембраны клеток, которые специализируются на абсорбции, сложены в виде пальцевидных выступов, называемых микроворсинками. Эта складка увеличивает площадь поверхности плазматической мембраны. Такие клетки обычно выстилают тонкий кишечник — орган, поглощающий питательные вещества из переваренной пищи. Это отличный пример соответствия формы функциям конструкции.
Люди с глютеновой болезнью имеют иммунный ответ на глютен, — белок, содержащийся в пшенице, ячмене и ржи. Иммунный ответ повреждает микроворсинки, и поэтому больные не могут усваивать питательные вещества. Это приводит к недоеданию, спазмам и диарее. Пациенты, страдающие целиакией, должны соблюдать безглютеновую диету.
Цитоплазма
Цитоплазма включает содержимое клетки между плазматической мембраной и ядерной оболочкой (структура будет обсуждена в ближайшее время). Она состоит из органелл, взвешенных в гелеобразном цитозоле, цитоскелете и различных химических веществах (рис. 1). Несмотря на то, что цитоплазма состоит на 70-80 процентов из воды, она имеет полутвердую консистенцию, которая обеспечивается белками внутри нее.
Однако, белки — не единственные органические молекулы, обнаруженные в цитоплазме. Там же находятся глюкоза и другие простые сахара, полисахариды, аминокислоты, нуклеиновые кислоты, жирные кислоты и производные глицерина. Ионы натрия, калия, кальция и многих других элементов также растворяются в цитоплазме. В цитоплазме происходят многие метаболические реакции, включая синтез белка.
Цитоскелет
Рисунок 3. Микрофиламенты, промежуточные нити и микротрубочки составляют цитоскелет клетки.
Если бы вы удалили все органеллы из клетки, оставались бы только плазматическая мембрана и цитоплазма? Нет. Внутри цитоплазмы все еще будут ионы и органические молекулы, а также сеть белковых волокон, которая помогает поддерживать форму клетки, закрепляет определенные органеллы в определенных положениях, позволяет цитоплазме и везикулам перемещаться внутри клетки и дает возможность одноклеточным организмам передвигаться самостоятельно. В совокупности эта сеть белковых волокон известна как цитоскелет.
Внутри цитоскелета есть три типа волокон: микрофиламенты, также известные как актиновые филаменты, промежуточные филаменты и микротрубочки (рис. 3).
Микрофиламенты являются самыми тонкими из волокон цитоскелета и участвуют в перемещении клеточных компонентов, например, во время деления клеток. Они также поддерживают структуру микроворсинок, обширную складку плазматической мембраны, обнаруженную в клетках, предназначенных для абсорбции. Эти компоненты также распространены в мышечных клетках и отвечают за сокращение мышечных клеток.
Промежуточные филаменты имеют промежуточный диаметр и выполняют структурные функции, такие как поддержание формы клетки и закрепление органелл. Кератин, соединение, укрепляющее волосы и ногти, образует промежуточные волокна одного типа.
Микротрубочки — самые толстые из волокон цитоскелета. Это полые трубки, которые могут быстро растворяться и преобразовываться.
Микротрубочки направляют движение органелл и представляют собой структуры, которые притягивают хромосомы к своим полюсам во время деления клеток. Они также являются структурными компонентами жгутиков и ресничек. В ресничках и жгутиках микротрубочки организованы в виде круга из девяти двойных микротрубочек снаружи и двух микротрубочек в центре.
Центросома — это область около ядра клеток животных, которая функционирует как центр организации микротрубочек. Он содержит пару центриолей, — две структуры, которые лежат перпендикулярно друг другу. Каждая центриоль представляет собой цилиндр из девяти троек микротрубочек.
Центросома реплицируется до деления клетки, и центриоли играют роль в перемещении дублированных хромосом к противоположным концам делящейся клетки. Однако точная функция центриолей в делении клеток не ясна, поскольку клетки, у которых удалены центриоли, все еще могут делиться, а клетки растений, у которых отсутствуют центриоли, способны к делению клеток.
Жгутики и реснички
Жгутики представляют собой длинные, похожие на волосы структуры, которые отходят от плазматической мембраны и используются для перемещения всей клетки (например, сперматозоидов, эвглены). Если у клетки есть жгутик, то как правило их количество колеблется от одного до нескольких.
Однако, когда присутствуют реснички, их обычно много, и они проходят по всей поверхности плазматической мембраны. Это короткие, похожие на волосы структуры, которые используются для перемещения целых клеток (например, парамеций) или перемещения веществ по внешней поверхности клетки (например, реснички клеток, выстилающих фаллопиевы трубы, которые перемещают яйцеклетку к матке, или реснички, выстилающие клетки дыхательных путей, которые перемещают твердые частицы к горлу).
Эндомембранная система
Эндомембранная система (эндо = внутри) — это группа мембран и органелл (рис. 4) в эукариотических клетках, которые работают вместе, чтобы модифицировать, упаковывать и транспортировать липиды и белки. Он включает ядерную оболочку, лизосомы и везикулы, эндоплазматический ретикулум и аппарат Гольджи, о которых мы вскоре поговорим. Хотя технически не внутри клетки, плазматическая мембрана включена в эндомембранную систему, потому что, как вы увидите, она взаимодействует с другими эндомембранозными органеллами.
Ядро
Обычно ядро является наиболее заметной органеллой в клетке. Ядро содержит ДНК клетки в форме хроматина и направляет синтез рибосом и белков. Рассмотрим его подробнее (Рисунок 4).
Рисунок 4. Самой внешней границей ядра является ядерная оболочка. Обратите внимание, что ядерная оболочка состоит из двух фосфолипидных бислоев (мембран) — внешней мембраны и внутренней мембраны — в отличие от плазматической мембраны, которая состоит только из одного фосфолипидного бислоя.
Ядерная оболочка представляет собой структуру с двойной мембраной, которая составляет самую внешнюю часть ядра. И внутренняя, и внешняя мембраны ядерной оболочки представляют собой бислои фосфолипидов.
Ядерная оболочка перемежается порами, которые контролируют прохождение ионов, молекул и РНК между нуклеоплазмой и цитоплазмой.
Чтобы понять хроматин, полезно сначала рассмотреть хромосомы. Хромосомы — это структуры ядра, состоящие из ДНК, наследственного материала и белков. Эта комбинация ДНК и белков называется хроматином.
Хромосомы эукариот представляют собой линейные структуры, у каждого вида есть определенное количество хромосом в ядрах клеток его тела. Например, у человека число хромосом составляет 46, тогда как у дрозофилы число хромосом равно 8.
Хромосомы видны и отличимы друг от друга только тогда, когда клетка готовится к делению. Когда клетка находится в фазах роста и поддержания своего жизненного цикла, хромосомы напоминают размотанный беспорядочный пучок нитей, который и является хроматином.
Мы уже знаем, что ядро направляет синтез рибосом, но как оно это делает? Некоторые хромосомы имеют участки ДНК, кодирующие рибосомную РНК. Темно окрашивающаяся область внутри ядра, называемая ядрышком, агрегирует рРНК с ассоциированными белками для сборки рибосомных субъединиц, которые затем транспортируются через ядерные поры в цитоплазму.
Эндоплазматический ретикулум
Эндоплазматический ретикулум (ЭР) (рис. 5) представляет собой серию взаимосвязанных мембранных канальцев, которые совместно модифицируют белки и синтезируют липиды. Однако эти две функции выполняются в отдельных областях эндоплазматической сети: шероховатом эндоплазматическом ретикулуме и гладком эндоплазматическом ретикулуме соответственно.
Полая часть канальцев ЭР называется просветом или цистернальным пространством. Мембрана ЭР, представляющая собой бислой фосфолипидов, залитый белками, непрерывна с ядерной оболочкой.
Шероховатый эндоплазматический ретикулум (ШЭР) назван так потому, что рибосомы, прикрепленные к его цитоплазматической поверхности, придают ему вид шипов при просмотре в электронный микроскоп.
Рибосомы синтезируют белки, будучи прикрепленными к ЭР, что приводит к переносу их вновь синтезированных белков в просвет ШЭР, где они претерпевают модификации, такие как сворачивание или добавление сахаров. ШЭР также производит фосфолипиды для клеточных мембран.
Если фосфолипидам или модифицированным белкам не суждено оставаться в ЭР, они будут упакованы в пузырьки и транспортироваться из ШЭР путем отпочкования от мембраны (Рисунок 4). Поскольку шероховатый ЭР участвует в модификации белков, которые будут секретироваться из клетки, его много в клетках, секретирующих белки, таких как печень.
Гладкий эндоплазматический ретикулум (ГЭР) является продолжением ШЭР, но на ее цитоплазматической поверхности мало рибосом или они отсутствуют вовсе (см. Рисунок 4). Функции гладкого ЭР включают синтез углеводов, липидов (включая фосфолипиды) и стероидных гормонов, детоксикация лекарств и ядов, метаболизм алкоголя, и хранение ионов кальция.
Аппарат Гольджи
Рисунок 5. Аппарат Гольджи в этой просвечивающей электронной микрофотографии белой клетки крови виден как стопка полукруглых уплощенных колец в нижней части этого изображения. Рядом с аппаратом Гольджи можно увидеть несколько везикул.
Мы уже упоминали, что пузырьки могут отпочковываться из ЭР, но куда они деваются? Перед достижением конечного пункта назначения липиды или белки в транспортных пузырьках необходимо отсортировать, упаковать и пометить, чтобы они оказались в нужном месте.
Сортировка, маркировка, упаковка и распределение липидов и белков происходит в аппарате Гольджи (также называемом тельцом Гольджи), в серии уплощенных мембранных мешочков (рис. 5).
Аппарат Гольджи имеет принимающую поверхность (cis) рядом с эндоплазматическим ретикулумом и высвобождающую (trans) поверхность на стороне от ЭР, к клеточной мембране. Транспортные пузырьки, которые образуются из ЭР, перемещаются к принимающей стороне, сливаются с ней и выделяют свое содержимое в просвет аппарата Гольджи.
Когда белки и липиды проходят через Гольджи, они претерпевают дальнейшие модификации. Наиболее частая модификация — добавление коротких цепочек молекул сахара. Затем вновь модифицированные белки и липиды маркируются небольшими молекулярными группами, чтобы они направлялись в нужное место назначения.
Наконец, модифицированные и помеченные белки упаковываются в пузырьки, которые отпочковываются с противоположной стороны Гольджи. В то время как некоторые из этих пузырьков, — транспортирующие, откладывают свое содержимое в другие части клетки, где они будут использоваться, другие, секреторные пузырьки, сливаются с плазматической мембраной и высвобождают свое содержимое за пределы клетки.
Количество Гольджи в различных типах клеток снова показывает, что форма следует за функцией внутри клеток. Клетки, которые участвуют в большой секреторной деятельности (например, клетки слюнных желез, которые секретируют пищеварительные ферменты, или клетки иммунной системы, которые секретируют антитела), имеют большое количество аппаратов Гольджи.
В растительных клетках Гольджи играет дополнительную роль в синтезе полисахаридов, некоторые из которых включены в клеточную стенку, а некоторые используются в других частях клетки.
Лизосомы
В клетках животных лизосомы представляют собой «мусоропровод». Пищеварительные ферменты в лизосомах помогают расщеплению белков, полисахаридов, липидов, нуклеиновых кислот и даже изношенных органелл. У одноклеточных эукариот лизосомы важны для переваривания пищи, которую они глотают, и для повторного использования органелл. Эти ферменты активны при гораздо более низком pH (более кислом), чем ферменты, расположенные в цитоплазме. Многие реакции, протекающие в цитоплазме, не могут происходить при низком pH, поэтому преимущество разделения эукариотической клетки на органеллы очевидно.
Лизосомы также используют свои гидролитические ферменты для уничтожения болезнетворных организмов, которые могут проникнуть в клетку. Хороший пример этого — группа белых кровяных телец, называемых макрофагами, которые являются частью иммунной системы вашего тела. В процессе, известном как фагоцитоз, часть плазматической мембраны макрофага инвагинирует (складывается) и поглощает патоген. Инвагинированный участок с патогеном внутри затем отщепляется от плазматической мембраны и становится пузырьком. Везикула сливается с лизосомой. Затем гидролитические ферменты лизосомы уничтожают патоген (рис. 6).
Рисунок 6. Макрофаг фагоцитировал потенциально патогенную бактерию в везикулу, которая затем срастается с лизосомой внутри клетки, так что патоген может быть разрушен.
Везикулы и вакуоли
Везикулы и вакуоли — это мембранные мешочки, которые служат для хранения и транспортировки. Вакуоли несколько крупнее везикул, и мембрана вакуоли не сливается с мембранами других клеточных компонентов. Везикулы могут сливаться с другими мембранами внутри клеточной системы. Кроме того, ферменты в вакуолях растений могут разрушать макромолекулы.
Рисунок 7. Эндомембранная система работает над модификацией, упаковкой и переносом липидов и белков.
Рибосомы
Рисунок 8. Рибосомы состоят из большой субъединицы и малой субъединицы. Во время синтеза белка рибосомы собирают аминокислоты в белки.
Рибосомы — это клеточные структуры, ответственные за синтез белка. При просмотре в электронный микроскоп свободные рибосомы выглядят как кластеры или отдельные крошечные точки, свободно плавающие в цитоплазме.
Рибосомы могут быть прикреплены либо к цитоплазматической стороне плазматической мембраны, либо к цитоплазматической стороне эндоплазматического ретикулума (рис. 8). Электронная микроскопия показала, что рибосомы состоят из больших и малых субъединиц.
Рибосомы — это ферментные комплексы, отвечающие за синтез белка.
Поскольку синтез белка важен для всех клеток, рибосомы находятся практически в каждой клетке, хотя в прокариотических клетках они меньше. Их особенно много в незрелых эритроцитах для синтеза гемоглобина, который участвует в транспортировке кислорода по всему телу.
Митохондрии
Рисунок 9. Эта просвечивающая электронная микрофотография показывает митохондрию, если смотреть с помощью электронного микроскопа.
Митохондрии часто называют «электростанциями» или «энергетическими фабриками» клетки, потому что они отвечают за выработку аденозинтрифосфата (АТФ), основной молекулы, несущей энергию клетки.
Образование АТФ при распаде глюкозы известно как клеточное дыхание. Митохондрии — это органоиды овальной формы с двумя мембранами (рис. 9), которые имеют собственные рибосомы и ДНК. Каждая мембрана представляет собой бислой фосфолипидов, залитый белками.
Внутренний слой имеет складки, называемые кристами, которые увеличивают площадь поверхности внутренней мембраны.
Область, окруженная складками, называется митохондриальным матриксом. Кристы и матрикс играют разные роли в клеточном дыхании.
В соответствии с нашей темой следования форме за функцией важно отметить, что мышечные клетки имеют очень высокую концентрацию митохондрий, потому что мышечным клеткам требуется много энергии для сокращения.
Пероксисомы
Пероксисомы — это маленькие круглые органеллы, окруженные одиночными мембранами. Они проводят реакции окисления, разрушающие жирные кислоты и аминокислоты. Они также выводят токсины из многих ядов, которые могут попасть в организм.
Алкоголь детоксицируется пероксисомами в клетках печени. Побочным продуктом этих реакций окисления является перекись водорода H2O2, которая содержится в пероксисомах, чтобы предотвратить повреждение химическим веществом клеточных компонентов за пределами органелл. Перекись водорода безопасно расщепляется пероксисомальными ферментами на воду и кислород.
Клетки животных против клеток растений
Несмотря на их фундаментальное сходство, между животными и растительными клетками есть поразительные различия (см. Таблицу).
- Клетки животных имеют центриоли, центросомы (обсуждаемые в рамках цитоскелета) и лизосомы, тогда как клетки растений их не имеют.
- У растительных клеток есть клеточная стенка, хлоропласты, плазмодесматы и пластиды, используемые для хранения, и большая центральная вакуоль, тогда как у животных клеток нет.
Клеточная стенка
На рисунке 1, схеме растительной клетки, вы видите структуру вне плазматической мембраны, называемую клеточной стенкой. Стенка клетки представляет собой жесткое покрытие, которое защищает клетку, обеспечивает структурную поддержку и придает форму клетке. Клетки грибов и протистов также имеют клеточные стенки.
В то время как основным компонентом стенок прокариотических клеток является пептидогликан, основной органической молекулой в стенке растительной клетки является целлюлоза (рис. 10), полисахарид, состоящий из длинных прямых цепей единиц глюкозы. Когда информация о питании касается пищевых волокон, это относится к содержанию целлюлозы в пище.
Рисунок 10. Целлюлоза представляет собой длинную цепь молекул β-глюкозы, связанных 1-4 связью. Пунктирные линии на каждом конце фигуры указывают на ряд большего количества единиц глюкозы.
Хлоропласты
Подобно митохондриям, хлоропласты также имеют собственную ДНК и рибосомы. Хлоропласты участвуют в фотосинтезе и могут быть обнаружены в эукариотических клетках, таких как растения и водоросли. При фотосинтезе углекислый газ, вода и световая энергия используются для производства глюкозы и кислорода. В этом основное различие между растениями и животными: растения (автотрофы) способны производить себе пищу, например глюкозу, тогда как животные (гетеротрофы) должны полагаться на другие организмы в качестве органических соединений или источника пищи.
Рисунок 11. Эта упрощенная диаграмма хлоропласта показывает внешнюю мембрану, внутреннюю мембрану, тилакоиды, грану и строму.
Подобно митохондриям, хлоропласты имеют внешнюю и внутреннюю мембраны, но внутри пространства, ограниченного внутренней мембраной хлоропласта, находится набор взаимосвязанных и уложенных друг на друга, заполненных жидкостью мембранных мешочков, называемых тилакоидами (рис. 11). Каждый стек тилакоидов называется грана. Жидкость, заключенная во внутренней мембране и окружающая грану, называется строма.
Хлоропласты содержат зеленый пигмент, называемый хлорофиллом, который улавливает энергию солнечного света для фотосинтеза. Как и в клетках растений, у фотосинтезирующих протистов есть хлоропласты. Некоторые бактерии также осуществляют фотосинтез, но у них нет хлоропластов. Их фотосинтетические пигменты расположены в тилакоидной мембране внутри самой клетки.
Эволюция в действии
Мы упоминали, что и митохондрии, и хлоропласты содержат ДНК и рибосомы. Вы не задумывались, почему? Убедительные доказательства указывают на эндосимбиоз как на объяснение. Симбиоз — это отношения, при которых организмы двух разных видов живут в тесной ассоциации и обычно проявляют особую адаптацию друг к другу.
Эндосимбиоз (эндо- = внутри) — это отношения, в которых один организм живет внутри другого. Эндосимбиотические отношения изобилуют природой. Микробы, вырабатывающие витамин К, например, Escherichia coli, обитают в кишечнике человека. Эти отношения полезны для нас, потому что мы не можем синтезировать витамин К. Это также полезно для микробов, потому что они защищены от других организмов и обеспечивают стабильную среду обитания и обильную пищу, живя в толстом кишечнике.
Ученые давно заметили, что бактерии, митохондрии и хлоропласты похожи по размеру. Мы также знаем, что митохондрии и хлоропласты содержат ДНК и рибосомы, как и бактерии. Ученые считают, что клетки-хозяева и бактерии сформировали взаимовыгодные эндосимбиотические отношения, когда клетки-хозяева поглощали аэробные бактерии и цианобактерии, но не уничтожали их. В процессе эволюции эти проглоченные бактерии стали более специализированными в своих функциях: аэробные бактерии стали митохондриями, а фотосинтезирующие бактерии — хлоропластами.
Центральная вакуоль
Ранее мы упоминали вакуоли как важные компоненты растительных клеток. Если вы посмотрите на рисунок 1, вы увидите, что каждая растительная клетка имеет большую центральную вакуоль, занимающую большую часть клетки. Центральная вакуоль играет ключевую роль в регулировании концентрации воды в клетках при изменении условий окружающей среды.
В клетках растений жидкость внутри центральной вакуоли обеспечивает тургорное давление, которое представляет собой внешнее давление, создаваемое жидкостью внутри клетки. Вы когда-нибудь замечали, что если вы забудете полить растение на несколько дней, оно увянет? Это связано с тем, что, когда концентрация воды в почве становится ниже, чем концентрация воды в растении, вода перемещается из центральных вакуолей и цитоплазмы в почву.
По мере того как центральная вакуоль сжимается, она оставляет клеточную стенку без поддержки. Эта потеря поддержки клеточных стенок растения приводит к его увяданию. Кроме того, эта жидкость может сдерживать травоядность, поскольку горький вкус содержащихся в ней отходов препятствует употреблению насекомыми и животными. Центральная вакуоль также служит для хранения белков в развивающихся семенных клетках.
Внеклеточный матрикс животных клеток
Рисунок 12. Внеклеточный матрикс состоит из сети веществ, секретируемых клетками.
Большинство клеток животных выделяют материалы во внеклеточное пространство. Основными компонентами этих материалов являются гликопротеины и белковый коллаген. В совокупности эти материалы называются внеклеточным матриксом (рис. 12).
Мало того, что внеклеточный матрикс удерживает клетки вместе, образуя ткань, он также позволяет клеткам внутри ткани связываться друг с другом.
Свертывание крови является примером роли внеклеточного матрикса в клеточной коммуникации. Когда клетки, выстилающие кровеносный сосуд, повреждены, в них появляется белковый рецептор, называемый тканевым фактором.
Когда тканевой фактор связывается с другим фактором внеклеточного матрикса, он заставляет тромбоциты прилипать к стенке поврежденного кровеносного сосуда, стимулирует соседние гладкомышечные клетки кровеносного сосуда к сокращению (тем самым сужая кровеносный сосуд) и инициирует серию шагов, которые стимулируют тромбоциты производить факторы свертывания крови.
Межклеточные соединения
Клетки также могут общаться друг с другом посредством прямого контакта, называемого межклеточными соединениями. Есть некоторые различия в способах, которыми это делают клетки растений и животных. Плазмодесмы представляют собой соединения между растительными клетками, тогда как контакты животных клеток включают плотные и щелевые соединения, а также десмосомы.
Как правило, длинные участки плазматических мембран соседних растительных клеток не могут касаться друг друга, потому что они разделены клеточными стенками, окружающими каждую клетку. Плазмодесмы — это многочисленные каналы, которые проходят между клеточными стенками соседних растительных клеток, соединяя их цитоплазму и позволяя транспортировать сигнальные молекулы и питательные вещества от клетки к клетке (рис. 13а).
Плотное соединение — это водонепроницаемое соединение между двумя соседними клетками животных (рис. 13б). Белки плотно прижимают клетки друг к другу. Эта плотная адгезия предотвращает утечку материалов между ячейками. Плотные соединения обычно находятся в эпителиальной ткани, которая выстилает внутренние органы и полости и составляет большую часть кожи. Например, плотные соединения эпителиальных клеток, выстилающих мочевой пузырь, предотвращают утечку мочи во внеклеточное пространство.
Также только в клетках животных обнаруживаются десмосомы, которые действуют как точечные сварные швы между соседними эпителиальными клетками (рис. 13в). Они удерживают клетки вместе в виде листов в растягивающихся органах и тканях, таких как кожа, сердце и мышцы.
Щелевые соединения в клетках животных похожи на плазмодесмы в клетках растений в том смысле, что они представляют собой каналы между соседними клетками, которые обеспечивают транспорт ионов, питательных веществ и других веществ, которые позволяют клеткам общаться (рис. 13г). Однако структурно щелевые контакты и плазмодесмы различаются.
Рисунок 13. Существует четыре типа соединений между ячейками. (а) Плазмодезма представляет собой канал между клеточными стенками двух соседних растительных клеток. (б) Плотные соединения соединяются с соседними клетками животных. (в) Десмосомы соединяют две клетки животных вместе. (г) Щелевые соединения действуют как каналы между клетками животных.
Таблица 1
Клеточный компонент | Функция | Присутствует у Прокариот? |
Присутствует у Животных? |
Присутствует у Растений? |
Плазматическая мембрана | Отделяет клетку от внешней среды; контролирует прохождение органических молекул, ионов, воды, кислорода и отходов в клетку и из нее | Да | Да | Да |
Цитоплазма | Обеспечивает структуру ячейки; место многих метаболических реакций; среда, в которой обнаружены органеллы | Да | Да | Да |
Нуклеоид | Местоположение ДНК | Да | Нет | Нет |
Ядро | Клеточная органелла, которая содержит ДНК и направляет синтез рибосом и белков | Нет | Да | Да |
Рибосома | Синтез белка | Да | Да | Да |
Митохондрии | Продукция АТФ / клеточное дыхание | Нет | Да | Да |
Пероксисомы | Окисляет и расщепляет жирные кислоты и аминокислоты, а также нейтрализует яды | Нет | Да | Да |
Пузырьки и вакуоли | хранение и транспортировка; пищеварительная функция в клетках растений | Нет | Да | Да |
Центросома | Неопределенная роль в делении клеток в клетках животных; источник микротрубочек в клетках животных | Нет | Да | Нет |
Лизосомы | переваривание макромолекул; рециркуляция изношенных органелл | Нет | Да | Нет |
Клеточная стенка | Защита, структурная поддержка и поддержание формы клетки | Да, в первую очередь пептидогликан у бактерий, но не архей | Нет | Да |
Хлоропласт | Фотосинтез | Нет | Нет | Да |
Эндоплазматический ретикулум | Модифицирует белки и синтезирует липиды | Нет | Да | Да |
Аппарат Гольджи | Изменяет, сортирует, маркирует, упаковывает и распространяет липиды и белки | Нет | Да | Да |
Цитоскелет | Поддерживает форму клетки, закрепляет органеллы в определенных положениях, позволяет цитоплазме и везикулам перемещаться внутри клетки и позволяет одноклеточным организмам двигаться независимо | Да | Да | Да |
Жгутик | Передвижение клетки | Несколько | Несколько | Нет, за исключением некоторых сперматозоидов растений. |
Реснички | Передвижение клеток, перемещение частиц вдоль внеклеточной поверхности плазматической мембраны и фильтрация | Нет | Несколько | Нет |
Резюме
Подобно прокариотической клетке, эукариотическая клетка имеет плазматическую мембрану, цитоплазму и рибосомы, но эукариотическая клетка обычно больше, чем прокариотическая клетка, имеет истинное ядро (то есть ее ДНК окружена мембраной) и имеет другие мембраны — связанные органеллы, которые позволяют разделить функции.
Плазматическая мембрана представляет собой бислой фосфолипидов, залитый белками. Ядрышко внутри ядра является местом сборки рибосом. Рибосомы находятся в цитоплазме или прикреплены к цитоплазматической стороне плазматической мембраны или эндоплазматического ретикулума. Они осуществляют синтез белка. Митохондрии выполняют клеточное дыхание и производят АТФ. Пероксисомы расщепляют жирные кислоты, аминокислоты и некоторые токсины. Пузырьки и вакуоли — это отсеки для хранения и транспортировки. В клетках растений вакуоли также помогают расщеплять макромолекулы.
Клетки животных также имеют центросому и лизосомы. Центросома состоит из двух тел, центриолей, роль которых в делении клеток неизвестна. Лизосомы — это пищеварительные органеллы клеток животных.
Растительные клетки имеют клеточную стенку, хлоропласты и центральную вакуоль. Стенка растительной клетки, основным компонентом которой является целлюлоза, защищает клетку, обеспечивает структурную поддержку и придает клетке форму. Фотосинтез происходит в хлоропластах. Центральная вакуоль расширяется, увеличивая клетку без необходимости производить больше цитоплазмы.
Эндомембранная система включает ядерную оболочку, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, везикулы, а также плазматическую мембрану. Эти клеточные компоненты работают вместе, чтобы модифицировать, упаковывать, маркировать и транспортировать мембранные липиды и белки.
Цитоскелет состоит из трех разных типов белковых элементов. Микрофиламенты придают клетке жесткость и форму, а также облегчают клеточные движения. Промежуточные нити несут напряжение и закрепляют на месте ядро и другие органеллы. Микротрубочки помогают клетке противостоять сжатию, служат дорожками для моторных белков, которые перемещают везикулы через клетку и тянут реплицированные хромосомы к противоположным концам делящейся клетки. Они также являются структурными элементами центриолей, жгутиков и ресничек.
Клетки животных общаются через свои внеклеточные матрицы и связаны друг с другом плотными контактами, десмосомами и щелевыми контактами. Клетки растений связаны и общаются друг с другом с помощью плазмодесм.
Разбор заданий с иллюстрациями из открытого банка заданий (фипи) по теме «Клетка как биологическая система»
Для того, что бы успешно сдать экзамен нужно, в том числе хорошо ориентироваться в иллюстративном материале. В этом посте мы разберем задания с иллюстрациями из открытого банка заданий. Конечно, это не все возможные иллюстрации, которые могут быть на экзамене, но чем больше иллюстраций вы разберете при подготовке, тем больше вероятность того, что вас не застанут врасплох.
Цветные метки на некоторых изображениях — мое добавление для удобства изучения картинки.
1. Изображённая на рисунке структура клетки, обладающая полупроницаемостью, представляет собой…
При данной формулировке задания картинка практически лишняя, так как упоминается одно из главных свойств этой структуры — полупроницаемость. На это свойство вы должны сразу среагировать и понять, что речь идет про плазматическую мембрану. Но узнавать мембрану на изображениях несомненно нужно. Стрелочками на изображении указаны: синими — основной и наиважнейший элемент мембран — фосфолипиды; красными — белки, часть из которых лежит на поверхности фосфолипидного слоя, часть полупогружена, а часть полностью пронизывает оба фосфолипидных слоя.
На данном изображение мембрана показана как бы на срезе и отсутствует еще один важный элемент строения мембраны. Он есть в следующем задании.
2. Какие элементы строения клеточной мембраны обозначены на рисунке цифрами 1, 2, 3 и какие функции они выполняют?
На этом изображении мы видим клеточную (она же плазматическая, она же цитоплазматическая, она же плазмоллема, она же цитолемма) мембрану как бы сверху и сбоку. Видя одновременно и срез и поверхность. Ответить на первую часть вопроса нам уже просто: 1 — белки, 2 — фосфолипиды, а вот 3 — это цепочки углеводов (гликокаликс).
Значение каждого элемента. Фосфолипиды являются важнейшей структурным элементом (основой, каркасом) мембраны. Каждая молекула состоит из двух частей (гидрофобные «хвостики» и гидрофильные «головки»). Гидрофобные части молекул «не любят» воду и поворачиваются всегда друг к другу (хвостик к хвостику), а гидофильные части молекул воду «любят», поэтому все время оказываются на поверхности слоя мембраны. За счет таких особенностей мембрана легко восстанавливается, а по сути самозамыкается, в случае небольших разрывов и в случае эндо- и экзоцитоза.
3. Какая структура изображена на рисунке?
Тут все просто — это хромосома, состоящая из двух сестринских хроматид, очень близко расположенных друг к другу. Хромосома состоит из двух хроматид перед делением (митозом/мейозом) и имеет определенные элементы, которые нужно знать обязательно. Молекулы ДНК обозначены зеленой стрелочкой (на этом рисунке не самое удачное изображение, но какое есть). Центромера (или первичная перетяжка) обозначена оранжевой стрелочкой. В районе центромеры до определенного момента деления две сестринские хроматиды соединены друг с другом. Красной стрелочкой обозначена вторичная перетяжка (есть не у всех хромосом), она же называется ядрышковым организатором, в этом месте располагаются гены содержащие информацию о рРНК (рибосомальных). Сиреневой стрелочкой обозначен спутник.
4.
Первым делом нужно вспомнить что такое тРНК. Это транспортная РНК, которая участвует в трансляции (этап биосинтеза белка), принося к рибосоме конкретную аминокислоту. Она небольшого размера и похожа на лист клевера. Правильный ответ — четвертый. И тРНК нужно запомнить в лицо.
Что же изображено на остальных рисунках? 1 — АТФ, состоящая из азотистого основания (аденин), углевода (рибоза) и трех остатков фосфорной кислоты. При чем на рисунке мы можем увидеть символичное изображение двух макроэргических связей (связи содержащие в себе большое количество энергии) — сиреневыми стрелками. 2 — третичная структура молекулы белка (глобула). 3 — молекула ДНК.
5.
На рисунке в целом изображен схематично нуклеотид. А — азотистое основание урацил. Б — пентоза (моносахарид) рибоза. Вывод о рибозе сделан на основании того, что на рисунке обозначен именно урацил, а урацил входит в состав только молекул РНК. А в состав нуклеотидов РНК входит пентоза рибоза (у ДНК дезоксирибоза). В — это остаток фосфорной кислоты.
Соответственно, на третий вопрос нужно ответить так: данный нуклеотид входит в состав иРНК, рРНК и тРНК.
6. Часть клетки, с помощью которой устанавливаются связи между органоидами, обозначена на рисунке буквой…
Сначала разберемся что мы видим на рисунке. Клетка явно имеет толстую клеточную оболочку, а значит это растительная клетка (может быть клетка грибов, но такое в заданиях редко бывает). Смотрим дальше. В — точно ядро; А — вакуоль с клеточным соком; Б — внутреннее содержимое клетки, т.е. цитоплазма; Г — вероятно, хлоропласты. И только цитоплазма (из представленных элементов) играет важную роль в «общении» органоидов между собой. Цитоплазма текуча (у эукариотов) и вещества с помощью перемещения цитоплазмы перемещаются от органоида к органоиду или к плазматической мембране. Соответственно, правильный ответ — Б.
7. На рисунке изображена клетка…
Видим тот же рисунок, но с более правильными (по форме) хлоропластами. Никаких сомнений — это растительная клетка. Основной момент при определении растительная перед вами находится клетка или животная, на мой взгляд, это наличие клеточной стенки (у животной клетки ее нет).
8. Назовите органоид растительной клетки, изображенный на рисунке, его структуры, обозначенные цифрами 1-3, и их функции.
Рассматривая внимательно изображение этого органоида, в первую очередь, нужно увидеть, что он двумембранный, т.е. окружен двумя мембранами (на рисунке хорошо видны две линии). Сразу же вспоминаем, что мы знаем два двумембранных органоида (митохондрия и хлоропласт) и митохондрия намного проще устроена. Значит, это хлоропласт. Конечно, это изображение нужно выучить наизусть, но нужно быть готовым, к тому, что хлоропласт может быть изображен и немного по-другому.
Теперь перейдем к внутреннему содержимому. Внутренняя мембрана хлоропласта образует целую сеть достаточно упорядоченных мембран. Мембраные пузыречки похожи на монетки. Один самостоятельный пузыречек — это тилакоид (оранжевая стрелочка), стопка тилакоидов — это грана. Длинный вытянутый тилакоид (часто соединяющий несколько гран) называют ламелой (зеленая стрелочка). Хлоропласт (вместе с митохондрией) имеет особенность строения, заключающуюся в наличии собственной ДНК. В этой молекуле ДНК содержатся гены с информацией о белках-ферментах, участвующих в фотосинтезе. И эти ферменты синтезируются на месте, т.е. в самом хлоропласте, а значит есть рибосомы. В результате фотосинтеза образуется глюкоза и из нее может здесь же синтезироваться крахмал (зерна крахмала можно увидеть под сиреневой стрелочкой) и липидные капли (на рисунке под синей стрелочкой). Внутреннее жидкое содержимое хлоропласта называют стромой.
Соответственно, правильный ответ: 1 — грана, 2 — ДНК, 3 — рибосомы (скорее всего, но так как рисунок не совсем четкий, то может и имеется ввиду строма).
9. На каком рисунке изображена митохондрия?
На третьем рисунке, уже знакомый нам (достаточно узнаваемый) хлоропласт. Вспоминаем, что митохондрия имеет две мембраны и безошибочно выбираем правильный — четвертый ответ. На рисунке под цифрой 4 хорошо видно, что мембран две и внутренняя мембрана органоида впячивется внутрь, образуя складки — кристы. Посмотрим на все многообразие изображений митохондрий. Попутно вспомним, что у митохондрий тоже есть собственная ДНК и рибосомы.
Что же изображено на первом и втором рисунке? Под номером 1 рибосома во время трансляции, на ее фоне мы можем видеть две тРНК и цепочку из аминокислот, которая пока прикреплена к одной из тРНК. Под номером 2 аппарат (комплекс) Гольджи. Не самое удачное, на мой взгляд, изображение этого органоида, но мы должны быть готовы ко всему, поэтому идем по ссылке и наслаждаемся многообразием изображений аппарата Гольджи. Вспоминая попутно, что это одномембранный органоид, который по мимо всего прочего образует лизосомы (мембранные пузырьки сверху органоида на рисунке).
10.
Самое главное чем отличаются прокариоты от эукариот — отсутствие (у прокариот) или наличие (у эукариот) оформленного ядра, т.е. ядерной оболочки вокруг наследственной информации. А — бактерия (относится к прокариотам), Б — хламидоманада (эукариоты). У бактерии кольцевая ДНК (синяя стрелочка), расположенная в цитоплазме, у хламидоманады оформленное ядро с ядрышком (оранжевая стрелочка). Так же можно добавить, что у эукариот есть различные органоиды. В частности у хламидоманады хроматофор, вакуоль и светочувствительный глазок. А у прокариот из органоидов есть только рибосомы.
11.
На рисунке изображен эндоцитоз — поступление веществ внутрь клетки (экзоцитоз наоборот). Процесс этот происходит с помощью плазматической мембраны и благодаря ее пластичности и текучести (а так же несомненно благодаря цитоскелету). Эндоцитоз делят на два разных процесса: фагоцитоз — поступление твердых веществ либо клеток (соответственно, фагоцитоз изображен на рис. А) и пиноцитоз — поступление жидкости (рис. Б). Бактерия будет переварена (разрушена) клеткой.
12. Определите тип и фазу деления клетки, изображенной на рисунке. Какие процессы происходят в этой фазе?
Первым делом надо понять митоз это или мейоз. Два важных момента, на которые нужно обратить внимание. Первое: нет признаков кроссинговера, т.е. хроматиды хромосом нарисованы однородными. Второе: здесь видно четко две пары гомологичных хромосом — две большие и две маленькие. это значит, что редукции наследственного материала не произошло. Значит — это митоз. Фаза — метафаза, так как хромосомы выстроились вдоль экватора по одной линии (так называемая метафазная пластинка).
Процессы: хромосомы, состоящие из двух хроматид, выстраиваются вдоль экватора. К центромерам хромосом прикрепляются нити веретена деления.
13. Какие стадии гаметогенеза обозначены на рисунке буквами А, Б и В? Какой набор хромосом имеют клетки на каждой из этих стадий? К развитию каких специализированных клеток ведёт этот процесс?
Если воспринимать на рисунке под буквой А все пространство до первой горизонтальной линии, то несомненно — это стадия размножения. На этой стадии происходит деление клетки путем митоза, набор хромосом <<2n4c>>. Под буквой Б обозначена стадия роста. Клетка увеличивается в размере, накапливает вещества и энергию для финальной стадии. Под буквой В стадия созревания. На этой стадии происходит мейоз и количество хромосом уменьшается. Набор хромосом становится <<nc>>.
Результатом гаметогенеза становится образования гамет, т.е. половых клеток (несомненно специализированных клеток).
[su_note note_color=”#defae6″]
Теория для подготовки к блоку “Цитология”
[/su_note]
Клеточная мембрана
Мембрана клетки = цитоплазматическая мембрана = плазматическая мембрана = плазмалемма
Образована двумя слоями фосфолипидов, которые имеют гидрофильные головки и гидрофобные хвосты. Головки расположены в сторону жидких сред: цитоплазма и внеклеточное вещество/ вещество окружающей среды, а хвосты – друг к другу. Так клеточная мембрана является достаточно плотной структурой, но в то же время пластичной и подвижной. Билипидный слой не дает содержимому клетки растекаться, а также препятствует проникновению внутрь клетки веществ, способных нанести ей вред.
Строение клеточной мембраны
Мембрана клеток частично проницаема. Это значит, что любое вещество не может в нее проникнуть, однако и закрытой ее назвать нельзя. Так как существуют константы гомеостаза (гомеостаз – постоянство внутренней среды), определяющие содержание веществ внутри клетки, то клетка выводит ненужные ей вещества и пропускает нужные. Для этого в клетках есть разные приспособления:
Белки-рецепторы для того, чтобы узнавать молекулы веществ, приближающихся к клетке.
Белки, образующие «тоннели» в клеточной мембране для пассивного тока воды и некоторых неорганических ионов.
Клеточная мембрана помимо выборочной проницаемости обладает свойством текучести. Для захвата пищевых частиц мембрана клетки впячивается, края этого участка мембраны как бы обнимают пищу. Потом края замыкаются и пища в пищевом пузырьке, который называется фагосомой, направляется в пищеварительную вакуоль, где специальные белки-ферменты расщепят пищу. Процесс захвата клеткой твердой пищи называется фагоцитозом. Если же клетка поглощает капельку, то процесс называется пиноцитозом, а пузырек, в котором капля транспортируется в вакуоль – везикулой. Когда клетка заканчивает свои пищеварительные процессы, то ей, как и многоклеточному сложному организму, нужно вывести наружу непереваренные остатки. Тогда происходит экзоцитоз (приставка «экзо-» означает наружу), процесс обратный фагоцитозу.
Мембрана клетки не представляет их себя непрерывную цепь липидов, она имеет включения в виде белков разных конфигураций. Они могут быть на поверхности мембраны, проходить сквозь нее, образовывать каналы, находиться в наружном или внутреннем слое липидов.
Ядро
Во-первых, это отличительная черта эукариотических организмов. Ядро управляет процессами внутри клетки, а также хранит генетическую информацию, которая передается по наследству.
Мембрана ядра состоит из двух оболочек, пронизанных ядерными порами. Внешняя оболочка ядра шероховатая, она связана с эндоплазматической сетью клетки.
Строение ядра. * Ядерный сок = кариоплазма.
Через поры тРНК и иРНК выходят в цитоплазму клетки. Тем временем, пока клетка не делится, в ядре располагаются деспирализованные молекулы ДНК, или же хроматин. Хроматином называются молекулы ДНК, которые связаны с белками. В профазе митоза и в профазе первого деления мейоза хроматин спирализуется, то есть наматывается на специальные гистоновые белки как проволока на карандаш. В таком виде ДНК становится компактной. В интерфазе можно увидеть огромные политенные хромосомы. Они настолько большие, что их прекрасно можно рассмотреть и в обычный световой микроскоп, однако образуются такие хромосомы далеко не во всех клетках. 1 хромосома образована 1 молекулой ДНК. Хромосомы могут быть однохроматидными и двухроматидными. Как раз-таки двухроматидными, состоящими из 2х сестринских хроматид, хромосомы становятся после процесса репликации. В центре такие хромосомы соединены особой перетяжкой – центромерой. Каждая хроматида имеет по два плеча, они могут быть разной длины, а могут быть одинаковой. На концах хроматид располагаются теломеры. Интересный факт: старением организма связано с укорачиванием теломер с течением жизни.
Строение двухроматидной хромосомы
Внутрь клетки проникают неорганические ионы, АТФ, белки и ферменты и т.д. В ядре есть жидкая составляющая, как в клетке, кариоплазма. А в кариоплазме – ядрышки, в которых происходит синтез частей рибосом. В цитоплазме формируются целые рибосомы. В одном ядре могут находиться от 1 до 7 ядрышек, образованных близкими по отношению друг к другу петлями ДНК.
Обычно в клетках располагается одно ядро, но бывают и исключения: эритроциты в ходе созревания утрачивают свое ядро, а клетки мышечной ткани – миоциты, наоборот имеют много ядер.
Задание EB0421
Все перечисленные ниже понятия, кроме двух, используют для описания транспортной функции плазматической мембраны. Определите два понятия, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны
- окисление
- диффузия
- пиноцитоз
- экзоцитоз
- гликолиз
Транспортная функция подразумевает под собой то, что через мембрану в клетку и из нее проходит некоторые вещества, молекулы, ионы.
- Окисление не имеет ничего общего с транспортом, как и с мембраной клетки.
- Диффузия – понятие, известное еще из курса физики. В ходе этого процесса молекулы одного вещества проникают между молекулами другого вещества. В клетке так же есть диффузия, когда вещество перемещается через мембрану клетки из области с меньшей концентрацией вещества в область с большей концентрацией. На этом основан осмос.
- Пиноцитоз – захват капель жидкости клетками. Захват, как и при фагоцитозе, происходит благодаря впячиванию мембраны.
- Экзоцитоз – процесс выведения веществ из клетки. Что-то, например, непереваренная частица заключается в специальный пузырек, который называется везикула. Везикулы перемещается в сторону клеточной мембраны. Далее пузырек сливается с мембраной, в его содержимое высвобождается наружу.
- Гликолиз – процесс окисления глюкозы, который не относится к транспортной функции никак.
Ответ: 15
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Задание EB11118
Какими путями вещества поступают в клетку? Каков механизм их поступления?
Для поступления веществ в клетку существуют следующие пути:
- Фагоцитоз — поглощение,захватывание твердых частиц клеточной мембраной и последующее их переваривание.
- Пиноцитоз — поглощение жидкостей клеточной мембраной;
- Диффузия и осмос процессы поступления веществ из области с большей концентрацией, в область с меньшей концентрацией. Частным случаем осмоса является проникновение веществ через полупроницаемую мембрану.
- Активный транспорт — перенос веществ против градиента концентрации,происходящий с затратами энергии.
Ответ: см. решение
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Задание EB21495
Установите соответствие между функциями клеточных структур и структурами, изображёнными на рисунке: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ФУНКЦИИ | СТРУКТУРЫ |
А) осуществляет активный транспорт веществ Б) изолирует клетку от окружающей среды В) обеспечивает избирательную проницаемость веществ Г) образует секреторные пузырьки Д) распределяет вещества клетки по органеллам Е) участвует в образовании лизосом |
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
На первой картинке изображена мембрана, которую легко узнать по билипидному слою, а на второй – комплекс Гольджи, состоящий из продолговатых цистерн.
Мембрана защищает и осуществляет транспорт.
Комплекс Гольджи отвечает как бы за пищеварение клетки, но не участвует в непосредственном расщеплении.
Перейдем к ответам:
Транспорт веществ — мембрана.
Изоляция клетки — мембрана.
Избирательная проницаемость – мембрана.
Секреторные пузырьки – комплекс Гольджи.
Распределение веществ- комплекс Гольджи.
Лизосомы – комплекс Гольджи.
Ответ: 111222
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Задание EB0501
Установите соответствие между структурами клеток и их функциями.
ФУНКЦИИ | СТРУКТУРА КЛЕТОК |
А) синтез белков Б) синтез липидов В) разделение клетки на отделы (компартменты) Г) активный транспорт молекул Д) пассивный транспорт молекул Е) формирование межклеточных контактов |
1) клеточная мембрана 2) ЭПС |
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
Странная аббревиатура ЭПС — Эндоплазматическая сеть. Приставка «Эндо-» обозначает то, что она находится внутри. Исходя из вариантов представим себе клетку из мембраны и сети внутри.
Прикинем варианты ответов:
Пока пропустим все синтезы, о них подумаем и узнаем потом.
Разделение клетки на отделы. Очевидно, что это деление внутри клетки. Видимо, это ЭПР.
Активный или пассивный транспорт молекул. Кроме барьерной функции, мембрана еще и отвечает за транспорт веществ, как активный, так и пассивный. Казалось бы, мембрана такая устойчивая структура, но не стоит забывать о фаго- и пиноцитозе (захват мембраной твердых и жидких частиц)
Одно из свойств клеточной мембраны — выборочная проницаемость.
Формирование межклеточных контактов. Сделаем наше представление о клетке еще проще. Представим себе ткань, не важно какую. Много маленьких клеточек, которые соприкасаются своими мембранами и взаимодействуют между собой. Таким образом, в формировании межклеточных контактов участвует именно мембрана.
Вернемся к синтезу. Просто порассуждаем снова. Мембрана — это лишь оболочка клетки, структура, безусловно, важная, но именно внутри клетки, внутри мембраны находятся органоиды, каждый из которых выполняет свою функцию. Вероятнее всего, за синтезы и прочие сложные вещи будет отвечать органоид, а не мембрана, поэтому, за синтез белка и липидов отвечает ЭПC.
Ответ: 222111
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Задание EB22415
Рассмотрите предложенную схему классификации органоидов. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.
По количеству мембран органеллы делятся:
- Одномембранные органоиды: эндоплазматическая сеть, комплекс Гольджи, лизосомы.
- Двумембранные органоиды: ядро, митохондрии, пластиды (лейкопласты, хлоропласты, хромопласты).
- Немембранные органоиды: рибосомы, центриоли, ядрышко.
В схеме вопрос стоит о двумембранных органоидах. Мы знаем, что к двумембранным относятся митохондрии и пластиды. Рассуждаем: пропуск всего один, а варианта два. Это не просто так. Нужно внимательно перечитать вопрос. Есть два типа клеток, но нам не сказано, о каком идет речь значит, ответ должен быть универсален. Пластиды характерны только растительным клеткам, следовательно, остаются митохондрии.
Ответ: митохондрии
pазбирался: Ксения Алексеевна | обсудить разбор | оценить
Ксения Алексеевна | Просмотров: 5.8k