Равномерное прямолинейное движение задачи егэ

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 56    1–20 | 21–40 | 41–56

Добавить в вариант

Школьник летом на даче жил недалеко от военного аэродрома, на который постоянно садились военно-транспортные самолеты, которые летели всегда по одной и той же траектории («глиссаде»), проекция которой на землю являлась прямой линией, отстоящей на расстояние L  =  800 м от дачи школьника. Он вооружился секундомером и точным угломерным инструментом, провел многократные измерения некоторых времен и углов и усреднил их для однотипных марок самолетов. Оказалось, что когда самолет находился на минимальном расстоянии от школьника, угол между горизонталью и направлением на самолет составлял а  альфа approx 37 градусов , а звук его двигателей был слышен в месте нахождения школьника спустя время tapprox 3 с. За это время самолет успевал удалиться от точки максимального сближения со школьником на угловое расстояниеvarphi approx 14 градусов . Исходя из этих данных, школьник определил скорость  v самолета. Чему она оказалась равна?

Какие законы Вы использовали для описания движения? Обоснуйте их применение к данному случаю.


Небольшое тело движется вдоль оси OX. На рисунке показан график зависимости проекции скорости Vx этого тела на указанную ось от времени t. Выберите все верные утверждения на основании анализа графика.

1)  За первые 30 секунд движения тело проходит такой же путь, как и за последние 30 секунд движения

2)  В интервале времени от t = 20 с до t = 35 с тело движется равномерно

3)  В момент времени t = 30 с тело останавливается

4)  Тело оказывается на максимальном расстоянии от своего начального положения через 60 секунд после начала движения

5)  В моменты времени t = 23 с и t = 33 с тело имеет одинаковое ускорение


На рисунке изображены графики зависимостей скоростей V двух точечных тел от времени t. Известно, что в начальный момент времени координата второго тела равна нулю, и в момент времени t  =  10 с тела встретились. Определите начальную координату первого тела. Ответ дайте в метрах.


На рисунке изображены графики зависимостей скоростей V двух точечных тел от времени t. Известно, что в начальный момент времени координата первого тела равна 15 м, и в момент времени t  =  10 с тела встретились. Определите начальную координату второго тела. Ответ дайте в метрах.


При проведении эксперимента исследовалась зависимость пройденного телом пути S от времени t. График полученной зависимости приведён на рисунке.

Выберите все утверждения, соответствующие результатам этих измерений.

1)  Скорость тела равна 6 м/с.

2)  Ускорение тела равно 2 м/с2.

3)  Тело движется равномерно.

4)  За вторую секунду пройден путь 6 м.

5)  За пятую секунду пройден путь 30 м.

Источник: Практикум по выполнению типовых тестовых заданий ЕГЭ. С. Б. Бобошина.


В эксперименте по измерению пути, пройденному телом, заполнена таблица зависимости пути от времени. Анализируя данные таблицы, выберите из приведённых ниже утверждений три правильных и укажите их номера.

t, с s, м
0 0
1 10
2 20
3 30
4 40

1)  За каждый из четырёх интервалов времени пройденный телом путь увеличивался на 10 м.

2)  Движение тела равномерное.

3)  Движение тела равноускоренное.

4)  Ускорение тела было постоянным и равным 10 м/с2.

5)  Скорость тела была постоянной и равной 10 м/с.


Задания Д1 B1 № 122

Автомобиль движется по прямой улице. На графике представлена зависимость его скорости от времени.

На каком интервале времени модуль ускорения автомобиля максимален?

1)  от 0 с до 10 с

2)  от 10 с до 20 с

3)  от 20 с до 30 с

4)  от 30 с до 40 с


К концу вертикального стержня привязана лёгкая нерастяжимая нить с маленьким грузиком на конце. Грузик раскрутили на нити так, что она отклонилась от вертикали на угол α = 30º (см. рис.). Как и во сколько раз надо изменить угловую скорость ω вращения грузика вокруг стержня для того, чтобы этот угол стал равным β = 60º?

Какие законы Вы использовали для описания движения шарика? Обоснуйте их применение к данному случаю.

Источник: Тренировочная работа по физике 13.12.2017, вариант ФИ10203


Тело движется прямолинейно вдоль оси x. На графике представлена зависимость координаты тела от времени. В какой момент времени модуль перемещения относительно исходной точки имел максимальное значение? (Ответ дайте в секундах.)


На рисунке представлен график движения автобуса из пункта A в пункт Б и обратно.

Пункт A находится в точке x = 0, а пункт Б  — в точке x = 30км. Чему равна максимальная скорость автобуса на всем пути следования туда и обратно? (Ответ дайте в километрах в час.)


Задания Д28 C1 № 4500

Мимо остановки по прямой улице проезжает грузовик со скоростью 10 м/с. Через 5 с от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с постоянным ускорением, и догоняет грузовик на расстоянии 150 м от остановки. Чему равно ускорение мотоцикла? Ответ приведите в метрах на секунду в квадрате.

Источник: ЕГЭ по физике 06.06.2013. Основная волна. Дальний Восток. Вариант 1.


Задания Д28 C1 № 4640

Мимо остановки по прямой улице проезжает грузовик со скоростью 10 м/с. Через 5 с от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с ускорением 3м/с в квадрате . Сколько времени потребуется мотоциклисту, чтобы догнать грузовик? Ответ приведите в секундах.

Источник: ЕГЭ по физике 06.06.2013. Основная волна. Дальний Восток. Вариант 5.


Задания Д28 C1 № 4675

Мимо остановки по прямой улице проезжает грузовик со скоростью 10 м/с. Через некоторое время t от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с постоянным ускорением 3 м/с в квадрате . Он догоняет грузовик на расстоянии 150 м от остановки. Чему равно t? Ответ приведите в секундах.

Источник: ЕГЭ по физике 06.06.2013. Основная волна. Дальний Восток. Вариант 6.


Задания Д28 C1 № 5375

Мимо остановки по прямой улице с постоянной скоростью проезжает грузовик. Через 5 с от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с ускорением 3 м/с в квадрате , и догоняет грузовик на расстоянии 150 м от остановки. Чему равна скорость грузовика? Ответ приведите в метрах в секунду.

Источник: ЕГЭ по физике 06.06.2013. Основная волна. Центр. Вариант 1.


Задания Д1 B1 № 7172

Координата тела меняется с течением времени согласно закону x = 4 − 2t, где все величины выражены в СИ. Какой из графиков отражает зависимость проекции скорости движения тела от времени?

1)  1

2)  2

3)  3

4)  4

Источник: Демонстрационная версия ЕГЭ—2016 по физике.


Электрон влетает в пространство между пластинами плоского конденсатора со скоростью V0  =  4 · 107 м/с (на рисунке показан вид сверху) на расстоянии d/2 от пластин. Расстояние между пластинами d = 4 мм, длина пластин L  =  6 см, напряжение между ними 10 В.

Выберите все верные утверждения.

1)  Модуль напряжённости электрического поля в конденсаторе равен 2,5 кВ/м.

2)  На электрон внутри конденсатора со стороны электрического поля будет действовать сила, всегда направленная вдоль отрицательного направления оси 0y.

3)  В процессе движения электрона внутри конденсатора действующая на него со стороны поля электрическая сила не будет изменяться.

4)  Траектория движения электрона в конденсаторе представляет собой прямую линию, направленную под углом к оси 0x.

5)  Время, которое потребуется электрону для того, чтобы вылететь из конденсатора, равно 0,0015 мкс.


При постановке первого опыта маленький шарик массой m, несущий заряд q > 0, отпускают с высоты h вблизи поверхности земли без начальной скорости в области, в которой создано однородное электрическое поле. Линии напряжённости этого поля направлены параллельно поверхности земли, сопротивление воздуха пренебрежимо мало. При постановке второго опыта бросают в аналогичных условиях с высоты 2h шарик массой 2m, который несёт заряд q/2. Определите, как изменяются время полёта и горизонтальное смещение шарика при постановке второго опыта по сравнению с первым опытом. Для каждой величины определите соответствующий характер изменения:

1)  увеличивается

2)  уменьшается

3)  не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Время полёта Горизонтальное смещение

Задания Д1 B1 № 101

Может ли график зависимости пути от времени иметь следующий вид?

1)  да

2)  нет

3)  может, если траектория прямолинейная

4)  может, если тело возвращается в исходную точку


Отрицательно заряженная частица влетает в однородное электрическое поле между пластинами плоского конденсатора (см. рис.). Начальная скорость частицы параллельна пластинам, при вылете из конденсатора скорость частицы направлена под углом α к первоначальному направлению движения. Как изменятся модуль ускорения частицы и время пролёта частицей конденсатора при увеличении напряжённости электрического поля в конденсаторе?

Для каждой величины определите соответствующий характер изменения:

1)  увеличится

2)  уменьшится

3)  не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Модуль ускорения частицы Время пролёта конденсатора

На рисунке представлен график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t. Чему равна проекция скорости тела υx в интервале времени от 30 до 50 секунд?

Всего: 56    1–20 | 21–40 | 41–56

ЗАДАЧИ на Прямолинейное равномерное
движение с решениями

Формулы, используемые в 9 классе на уроках
«Задачи на прямолинейное равномерное движение».

Название величины

Обозначение

Единица измерения (в СИ)

Связь с другими величинами

Начальная координата

х0

м

х0 = х – Sх

х0 = х – νxt

Координата в любой момент времени

х

м

х = х0 + Sх

х = х0 + νxt

Проекция скорости

 

νx

м/с

Проекция перемещения

Sх

м

Sх = νxt  

Sх = х – х0

Время

t

с

1 мин = 60 с;   1 ч = 3600 с;   1 км = 1000 м;   1 м/с = 3,6 км/ч.



ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ


Типовая задача «Уравнение координаты (нахождение неизвестной величины)»

Задача № 1.
 В начальный момент времени тело находилось в точке с координатой 5 м, а через 2 мин от начала движения — в точке с координатой 95 м. Определите скорость тела и его перемещение.


Типовая задача «Уравнение координаты. Движение двух тел»

Задача № 2.
 Движение двух тел задано уравнениями  x1 = 20 – 8t и х2 = –16 + 10t (время измеряется в секундах, координата — в метрах). Определите для каждого тела начальную координату, проекцию скорости, направление скорости. Вычислите время и место встречи тел.


Типовая задача «График координаты»

Задача № 3.
  Движение тела задано графиком координаты (зависимости координаты от времени). По графику определите:  а) начальную координату тела;  б) проекцию скорости тела;  в) направление движения тела (по оси х или против оси х);  г) запишите уравнение координаты.


Типовая задача «График координаты. Движение нескольких тел»

Задача № 4.
 На рисунке изображены графики движения трех тел. Изучив рисунок, для каждого тела определите:  а) начальную координату;  б) скорость;  в) направление движения;  г) запишите уравнение координаты.


ЗАДАЧИ ПОСЛОЖНЕЕ

Задача № 5.
 На рисунке представлены графики зависимости координаты х от времени t для пяти тел. Определите скорости этих тел. Проанализируйте точки пересечения графиков. Постройте графики зависимости скорости от времени.

РЕШЕНИЕ:


Задача № 6.
 По графикам на рисунке напишите уравнения движения x = x(t). Из уравнений и графиков найдите координаты тел через 5 с, скорости движения тел, время и место встречи второго и третьего тел.

РЕШЕНИЕ:


Задача № 7.
  ОГЭ
  Расстояние (S) между городами М и К = 250 км. Одновременно из обоих городов навстречу друг другу выезжают автомашины. Машина из города М движется со скоростью = 60 км/ч, из города К — со скоростью ν2 = 40 км/ч. Построить график зависимости пути от времени для каждой из машин и по ним определить место встречи и время их движения до встречи.


Задача № 8.
   ЕГЭ
 Скорость течения реки vp = 1 м/с, скорость лодки относительно воды v0 = 2 м/с. Под каким углом к берегу следует держать курс, чтобы лодка двигалась перпендикулярно берегу? За какое время t она переправится через реку, ширина которой d = 200 м?


Алгоритм решения ЗАДАЧИ на Прямолинейное равномерное движение.

Задачи, описывающие движение, содержат два типа величин: векторные (имеющие направление) и скалярные (выражающиеся только числом). К векторным величинам при описании равномерного прямолинейного движения относятся скорость и перемещение.

Для перехода от векторов к скалярам выбирают координатную ось и находят проекции векторов на эту ось, руководствуясь следующим правилом: если вектор сонаправлен с осью, то его проекция положительна, если противоположно направлен — отрицательна. (Могут быть и более сложные случаи, когда вектор не параллелен координатной оси, а направлен к ней под некоторым углом.) Поэтому при решении задачи обязательно нужно сделать чертеж, на котором изобразить направления всех векторов и координатную ось. При записи «дано» следует учитывать знаки проекций.

При решении задач все величины должны выражаться в международной системе единиц (СИ), если нет специальных оговорок.

В решении задачи единицы величин не пишутся, а записываются только после найденного значения величины.


Это конспект по теме «ЗАДАЧИ на Прямолинейное равномерное движение с решениями». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на Прямолинейное равноускоренное движение с решениями
  • Посмотреть конспект по теме КИНЕМАТИКА: вся теория для ОГЭ (шпаргалка)
  • Вернуться к Списку конспектов по Физике.
  • Проверить свои знания по Физике (ОНЛАЙН-ТЕСТЫ)

Кинематика. Равномерное прямолинейное движение, равноускоренное прямолинейное движение, движение по окружности.

В. З. Шапиро

Первое задание ЕГЭ по физике проверяет ваши знания по разделу «Кинематика». Оно относится к базовому уровню, и в нем нет возможности выбора ответа. Для его решения необходимо проанализировать условие задачи, внимательно рассмотреть график зависимости кинематической величины от времени (при наличии такого графика), правильно подобрать формулу, провести расчет и записать ответ в предлагаемых единицах измерения.

Определение кинематических величин по графику

1. На рисунке приведён график зависимости проекции скорости тела upsilon_x от времени t.

Определите проекцию ускорения тела a_x в промежутке времени от 15 до 20 с.

Ответ: _________________________ м/с2.Решение:

На графике представлена зависимость проекции скорости от времени. На участке от 15 до 20 с скорость тела изменяется от 10 м/с до -10 м/с. Это говорит о равноускоренном движении, причем проекция ускорения тела должна быть отрицательной. Для решения задачи необходимо воспользоваться формулой для определения проекции ускорения:

a_x=frac{v_x-v_{0x}}{t}.  Проведем расчет: a_x=frac{-10-10}{5}=-4(м/с2).Полученный результат подтверждает, что движение равноускоренное, причем проекция ускорения отрицательная.

Ответ: -4 м/с2.

Секрет решения: Долгое время в учебниках физики движение с переменной скоростью делилось на равноускоренное  (a_x , textgreater ,0) и равнозамедленное (a_{x } , textless ,0). Но в последнее время в основном применяют термин «равноускоренное движение», подразумевая постоянство ускорения. Только знак проекции ускорения определяет возрастание или убывание скорости движения тела.

Необходимая теория: Равноускоренное движение

2. На рисунке приведён график зависимости координаты тела x от времени t при его прямолинейном движении по оси x.

Определите проекцию скорости тела upsilon_x в промежутке  времени от 25 до 30 с.

Ответ: ___________________________ м/с.

Согласно представленному графику, зависимость координаты тела от времени является линейной. Это указывает на равномерный характер движения тела. Чтобы решить задачу, необходимо воспользоваться формулой для определения скорости при равномерном движении:

v_x=frac{x-x_0}{t}. Проведем расчет: v_x=frac{0-10}{5}=-2 (м/с)

Ответ: -2 м/с.

Проекция скорости получилась отрицательной, и это означает, что в указанный временной интервал тело двигалось в направлении, противоположном выбранной оси Ох.

Необходимая теория: Вычисление перемещения по графику проекции скорости

3. Автомобиль движется по прямой улице вдоль оси Ox. На графике представлена зависимость проекции его скорости от времени.

Определите путь, пройденный автомобилем за 30 с от момента начала наблюдения.

Ответ: _________________________ м.

Так как по условию задачи нам дается график зависимости проекции скорости от времени, то пройденный путь будет определяться площадью геометрической фигуры под графиком. Для вычисления площади получившегося пятиугольника его можно разбить на несколько фигур, например, на две трапеции (см. рис.).

Используя известные формулы для нахождения площади трапеции, можно рассчитать путь за первые 10 с и последующие 20 с (от 10 с до 30 с).

S_1= frac{10+20}{2} cdot 10=150 (м);   S_2= frac{10+20}{2} cdot 20=300 (м);

S=150+300=450 (м).

Ответ: 450 м.

Полученный пятиугольник можно разбить не только на две трапеции. Здесь можно выделить трапецию, прямоугольник и треугольник. Тогда необходимо рассчитывать площади трех фигур и так же их суммировать.

4. На рисунке приведен график зависимости проекции скорости тела, движущегося вдоль оси Ох, от времени.

Определите проекцию перемещения тела за 10 с от начала наблюдения.

Ответ: ________________________ м.

Так же, как в задаче №3, модуль перемещения будет определяться площадью геометрической фигуры под графиком. Но проекция перемещения за время от 0 до 6 с будет положительной, а от 6 до 10 с отрицательной. Общая проекция перемещения будет определяться их суммой.

S_{1x}= frac{6+2}{2}cdot 10=40 (м); S_{2x}= frac{4cdot (-10)}{2}=-20 (м); S_x= 40+(-20)=20 (м).

Ответ: 20 м.

При расчете S_{2x} можно получить положительное число, но надо помнить, что в интервале от 6 до 10 с тело движется в направлении, противоположном оси Ох. Это означает, что проекция перемещения будет отрицательной. Пройденный путь за указанное время от 0 до 10 с определяется суммой модулей проекций перемещений и будет равным 60 м.

Относительность движения

5. Из двух городов навстречу друг другу с постоянной скоростью движутся два автомобиля. На графике показана зависимость расстояния между автомобилями от времени. Скорость второго автомобиля 25 м/с. С какой скоростью движется первый автомобиль?

Ответ: ________________________ м/с.

Формула для нахождения относительной скорости в векторной форме имеет вид:

Если два тела движутся навстречу друг другу, то в проекциях на ось оХ это уравнение выглядит следующим образом:

С учетом данных графика можно рассчитать относительную скорость этих автомобилей при движении навстречу друг другу. Это происходит на интервале от 0 до 60 мин.

, скорость первого автомобиля

Ответ: 15 м/с.

В курсе математики при изучении движения двух тел вводятся понятия «скорость сближения» и «скорость удаления». В первом случае скорости тел суммируются, во втором вычитаются. Эти действия основаны на знаках проекций скоростей движущихся тел. Действия с векторами и их проекциями на оси координат используются как в физике, так и в математике.

6. Два точечных тела начинают двигаться из одной точки вдоль оси OX в противоположных направлениях. На рисунке показаны графики зависимостей проекций их скоростей Vx на ось OX от времени t. Чему будет равно расстояние между этими телами через 8 секунд после начала движения?

Ответ: ___________________________ м.

Эта задача является комбинированной. Для её решения необходимо воспользоваться материалом двух тем: «Определение кинематических величин по графику» и «Относительность движения». Для определения проекций перемещений тел за 8 с необходимо рассчитать площади фигур под графиком.

S_{1x}=frac{8cdot 6}{2}=24 (м); S_{2x}=frac{8cdot (-4)}{2}=-16(м).

Знак «минус» для S_{2x} показывает, что тела движутся в противоположных направлениях. Поэтому расстояние между ними через 8 с равно сумме модулей перемещений.

S_{1x}+S_{2x}=24+16=40 (м).

Ответ: 40 м.

Секрет решения:. Самое главное в этой задаче – выяснить, в каких направлениях двигаются тела. Для этого надо уметь извлекать информацию из графических зависимостей, другими словами, надо уметь «читать» графики. Это умения необходимы почти во всех разделах физики.

7. Катер плывёт по прямой реке, двигаясь относительно берега перпендикулярно береговой линии. Модуль скорости катера относительно берега равен 6 км/ч. Река течёт со скоростью 4,5 км/ч. Чему равен модуль скорости катера относительно воды?

 Ответ: ___________________________ км/ч

Решение задачи удобно сопроводить чертежом или рисунком. Выберем направление скорости реки вправо. Тогда катеру необходимо держать курс немного левее, чтобы двигаться перпендикулярно береговой линии.

Векторы собственной скорости катера, скорости течения реки и скорости катера относительно береговой линии образуют прямоугольный треугольник. Запишем для него теорему Пифагора:

Ответ: 7,5 км/ч.

Равномерное движение тел по окружности

Необходимая теория: Равномерное движение по окружности

8. Установленная на станке фреза равномерно вращается с частотой 600 оборотов в минуту. Чему равен модуль ускорения точек, находящихся на расстоянии 3 см от оси фрезы? Ответ округлите до целого числа.

Ответ: ___________________________ м/с2.

Так как тело движется равномерно по окружности, то найти требуется центростремительное ускорение. Его можно рассчитать по формуле:    Линейная скорость v связана с угловой w соотношением v=wR=2pivartheta R. Подставляя это выражение в первое уравнение и проводя сокращения, получим  При частоте вращения 600 оборотов в минуту тело будет совершать 10 оборотов за секунду.

Проведем расчет: 

Ответ: 118 м/с2.

В теме «Равномерное движение тел по окружности» достаточно много формул, которые трудно запоминаются. Из них надо знать базовые, которые относятся к периоду, частоте, линейной скорости, угловой скорости и центростремительному ускорению. Все остальные можно получить через достаточно простые рассуждения и выводы.

9. Две шестерни, сцепленные друг с другом, вращаются вокруг неподвижных осей. Большая шестерня радиусом 20 см делает 20 оборотов за 10 секунд. Сколько оборотов в секунду делает меньшая шестерня радиусом 10 см?

Ответ: ___________________________ Гц.

Так как шестерни касаются друг друга, это условие говорит о равенстве линейных скоростей этих тел. Выразим скорости вращения через радиусы и периоды обращения.

v_1=frac{2pi R_1}{T_1}; v_2=frac{2pi R_2}{T_2}.

Приравняем скорости и проведем сокращения.

frac{2pi R_1}{T_1}=frac{2pi R_2}{T_2} ; frac{R_1}{T_1}=frac{R_1}{T_1}; с учетом того, что период и частота величины обратные, запишем следующее равенство:

R_{1 }vartheta_1=R_2vartheta_2

vartheta_2=frac{R_{1 }vartheta_1}{R_2}.

Проведем расчет: vartheta_2=frac{0,2}{0,1}cdot 2=4 (Гц).

Ответ: 4 Гц.

В задачах подобного типа всегда надо искать физическую величину, которая является общей для нескольких тел. В данной задаче – это скорость вращения обеих шестерней. Но надо иметь ввиду, что частоты их вращения и угловые скорости различны.

10. Волчок, вращаясь с частотой 20 с-1, свободно падает с высоты 5 м. Сколько оборотов сделает волчок за время падения?

 Ответ: ___________________________ оборотов.

Вначале определим время падения волчка с высоты 5 м. Так как он падает свободно, то начальную скорость будет равна 0. Тогда высота и время падения будут связаны формулой   h=frac{gt^2}{2}; отсюда t=sqrt{frac{2h}{g}}.  Проведем расчет времени падения: t=sqrt{frac{2cdot 5}{10}} =1 (с).  Так как волчок вращается с частотой 20 c^{-1}, то это означает, что за 1 секунду он делает 20 оборотов. Так как время падения составляет 1 с, то количество оборотов также равно 20.

Ответ: 20.

Секрет решения: Эта задача — комбинированная. В ней связаны два раздела кинематики: «Равноускоренное движение» и «Равномерное движение тел по окружности».  Надо знать, что суть формул при движении тел с ускорением по горизонтали или по вертикали под действием силы тяжести не меняется. Главное — не ошибиться со знаками проекций для скорости и ускорения.

Если вы хотите разобрать большее количество заданий — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 1 ЕГЭ по физике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

11. Сюжетные текстовые задачи


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи на прямолинейное движение

Если тело движется с постоянной скоростью, то пройденное им расстояние удовлетворяет следующей формуле: [{large{S=vcdot t}}] где (v) — его скорость, (t) — время, в течение которого оно двигалось.

Другие вариации данной формулы: (v=dfrac St) и (t=dfrac Sv)

Некоторые частные случаи:

(blacktriangleright) Когда два тела движутся навстречу друг другу со скоростями (v_1) и (v_2) соответственно, то (v_1+v_2) — их скорость сближения. Если (S) — расстояние между ними на момент начала движения, (t) — время, через которое они встретились, то:

(blacktriangleright) Когда тела движутся в противоположном направлении (например, из одной точки), то (v_1+v_2) — их скорость удаления. Тогда расстояние (S) между ними через время (t):

(blacktriangleright) Когда тела движутся друг за другом, то:
((1) quad v_1>v_2). Тогда первое тело догонит второе через некоторой время (t).
(v_1-v_2) — скорость сближения. Если (S) — расстояние между ними в начале движения, то:

((2) quad v_1<v_2). Тогда первое тело никогда не догонит второе и расстояние между ними будет только увеличиваться.
(v_2-v_1) — скорость удаления. Если (S) — расстояние между ними на момент начала движения, то через время (t) расстояние между ними будет:

((3) quad v_1=v_2). Тогда первое тело никогда не догонит второе, но расстояние между ними всегда будет оставаться одинаковым.


Задание
1

#3013

Уровень задания: Легче ЕГЭ

Катер движется по стоячей воде. Собственная скорость катера — (35) км/ч. Навстречу катеру дует ветер, который за каждый час сносит катер на (3) км назад. За сколько часов катер доберется в назначенный пункт, если он находится на расстоянии (144) км от места начала движения катера?

Так как за час катер проходил бы 35 км, но ветер сносит его назад на 3 км, то в итоге за час катер проходит 32 км. Следовательно, 144 км катер пройдет за (144:32=4,5) часа.

Ответ: 4,5


Задание
2

#3014

Уровень задания: Легче ЕГЭ

Яхта движется по стоячей воде, ее собственная скорость — (30) км/ч, встречный ветер каждую минуту сносит яхту на (20) метров. За сколько часов яхта пройдет (259,200) метров?

За каждый час яхта проходила бы 30 км, или 30000 метров, значит, за минуту она проходила бы (30,000:60=500) метров. Так как за каждую минуту ветер сносит ее на 20 метров, то в итоге за минуту яхта проходит 480 метров. Следовательно, ей понадобится (259,200:480=540) минут или (540:60=9) часов.

Ответ: 9


Задание
3

#3017

Уровень задания: Легче ЕГЭ

Два велосипедиста выехали из одного места в одном направлении. Скорость первого – 10 км/ч, а второго – 18 км/ч. Через сколько часов расстояние между велосипедистами будет равно 104 км?

Заметим, что за каждый час второй велосипедист будет проходить на (18-10=8) км больше, чем первый. Следовательно, 8 км/ч – скорость удаления. Изначально между велосипедистами было расстояние 0 км, стало – 104 км, следовательно, расстояние между ними изменилось на 104 км. Значит, прошло (104:8=13) часов.

Ответ: 13


Задание
4

#3018

Уровень задания: Легче ЕГЭ

Два велосипедиста выехали в одном направлении из мест, находящихся на расстоянии 13 км друг от друга. Скорость первого – 12 км/ч, а второго – 17 км/ч, причем второй находился в начале движения впереди. Через сколько часов расстояние между велосипедистами будет равно 58 км?

Заметим, что за каждый час второй велосипедист будет проходить на (17-12=5) км больше, чем первый. Следовательно, 5 км/ч – скорость удаления. Изначально между велосипедистами было расстояние 13 км, стало – 58 км, следовательно, расстояние между ними изменилось на (58-13=45) км. Значит, прошло (45:5=9) часов.

Ответ: 9


Задание
5

#3012

Уровень задания: Легче ЕГЭ

Альпинистка Маша начала ползти по стене, находясь на высоте (2,75) м от пола. За каждую минуту она поднималась бы на (1,5) м, но ветер тут же сносит ее вниз на (0,25) м. Сколько минут она ползет, если теперь она находится на высоте (14) м от пола?

Так как Маша уже находилась на высоте 2,75 м, то проползла она за время наблюдения (14-2,75=11,25) метров. Заметим, что в итоге за каждую минуту она поднимается на 1,25 метров. Следовательно, время, которое она затратила на подъем, равно [11,25:1,25=9 {small{text{минут.}}}]

Ответ: 9


Задание
6

#818

Уровень задания: Легче ЕГЭ

Два туриста одновременно вышли в одном направлении в город N. При этом вышли они из разных городов, расстояние между которыми 9 км. Известно, что турист, изначально находившийся дальше от города N, шёл со скоростью, в два раза превышающей скорость другого туриста. В город N они прибыли одновременно, через 3 часа после начала движения. Найдите скорость туриста, который шёл быстрее. Ответ дайте в км/ч.

Пусть (v) км/ч – скорость медленного туриста.

Тогда расстояние, которое прошёл медленный турист, равно (3v), а расстояние, которое прошёл быстрый турист, равно (2v cdot 3 = 6v).

Так как быстрый турист прошёл на 9 км больше, то:

[6v — 3v = 9,] откуда находим (v = 3) км/ч, значит скорость быстрого туриста (2cdot 3 = 6) км/ч.

Ответ: 6


Задание
7

#2128

Уровень задания: Легче ЕГЭ

Лыжник планировал проехать (4, км) с горы с постоянной скоростью (v). Вместо этого первые два километра он проехал в два раза быстрее, чем планировал, а оставшиеся два километра он проехал в два раза медленнее, чем планировал. Во сколько раз больше времени ушло у лыжника на самом деле, чем должно было бы уйти, если бы всё в его жизни было по плану?

Пусть по плану на весь маршрут лыжника должно было уйти (t) часов, тогда на первые два километра (которые составляют половину пути) у лыжника ушло [tcdotdfrac{1}{2}cdotdfrac{1}{2} = 0,25t, ч,,] а на оставшиеся два километра ушло [tcdotdfrac{1}{2}cdot 2 = t, ч,,] следовательно, на весь путь ушло (1,25t, ч), то есть в (1,25) раза больше, чем было запланировано изначально.

Ответ: 1,25

Задачи на прямолинейное движение в ЕГЭ по математике могут быть как совсем простыми, без необходимости вводить переменную, так и более сложными, где требуется свести задание к решению квадратного уравнения. Для успешного выполнения подобного упражнения школьнику необходимо прежде всего запомнить следующую формулу:
[{large{S=Vcdot t}}] где (S) — пройденное расстояние, (V) — скорость, (t) — время, в течение которого двигалось тело.

Для того чтобы решить задачи на прямолинейное движение в ЕГЭ, учащимся из Москвы и других городов также для большей наглядности стоит выполнить чертеж. На нем нужно отметить все векторы, о которых идет речь в условии упражнения.

Для того чтобы правильно решить задачи на прямолинейное движение в ЕГЭ и получить заветные баллы, многим школьникам необходимо восполнить пробелы в знаниях по данной теме. Поможет в этом образовательный проект «Школково». Наш ресурс предоставляет возможность не только повторить теоретический материал, но и познакомиться с различными вариантами решения заданий по данной теме.

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

За­да­ние 1 № 101. Может ли гра­фик за­ви­си­мо­сти пути от вре­ме­ни иметь сле­ду­ю­щий вид?

1) да

2) нет

3) может, если тра­ек­то­рия пря­мо­ли­ней­ная

4) может, если тело воз­вра­ща­ет­ся в ис­ход­ную точку

Ре­ше­ние.

Путь — это фи­зи­че­ская ве­ли­чи­на, по­ка­зы­ва­ю­щая прой­ден­ное телом рас­сто­я­ние. Иначе го­во­ря, это длина прой­ден­но­го участ­ка тра­ек­то­рии. По опре­де­ле­нию, путь есть ве­ли­чи­на по­ло­жи­тель­ная, ко­то­рая может толь­ко воз­рас­тать со вре­ме­нем, так что пред­став­лен­ный гра­фик не может изоб­ра­жать за­ви­си­мость пути от вре­ме­ни.

Пра­виль­ный ответ: 2.

За­да­ние 1 № 125. Вер­то­лет под­ни­ма­ет­ся вер­ти­каль­но вверх. Ка­ко­ва тра­ек­то­рия дви­же­ния точки на конце ло­па­сти винта вер­то­ле­та в си­сте­ме от­сче­та, свя­зан­ной с вин­том?

1) точка

2) пря­мая

3) окруж­ность

4) вин­то­вая линия

Ре­ше­ние.

В си­сте­ме от­сче­та, свя­зан­ной с вин­том, точка на конце ло­па­сти не дви­га­ет­ся. Сле­до­ва­тель­но, ее тра­ек­то­рия в дан­ной си­сте­ме от­сче­та пред­став­ля­ет собой точку.

Пра­виль­ный ответ: 1.

За­да­ние 1 № 126. Два ав­то­мо­би­ля дви­жут­ся по пря­мо­му шоссе: пер­вый — со ско­ро­стью ν, вто­рой — со ско­ро­стью -3 ν. Ка­ко­ва ско­рость вто­ро­го ав­то­мо­би­ля от­но­си­тель­но пер­во­го?

1)

2)

3)

4)

Ре­ше­ние.

Ско­рость вто­ро­го ав­то­мо­би­ля от­но­си­тель­но пер­во­го равна ν2 ν 1=-3 ν- ν= -4ν

Пра­виль­ный ответ: 2.

За­да­ние 1 № 131. Лодка долж­на по­пасть на про­ти­во­по­лож­ный берег реки по крат­чай­ше­му пути в си­сте­ме от­сче­та, свя­зан­ной с бе­ре­гом. Ско­рость те­че­ния реки u, а ско­рость лодки от­но­си­тель­но воды ν . Чему дол­жен быть равен мо­дуль ско­ро­сти лодки от­но­си­тель­но бе­ре­га?

1)

2)

3)

4)

Ре­ше­ние.

1 спо­соб: По за­ко­ну сло­же­ния ско­ро­стей, век­тор ско­ро­сти лодки от­но­си­тель­но бе­ре­га (не­по­движ­ной с.о.) равен сумме ско­ро­сти лодки от­но­си­тель­но воды (по­движ­ной с.о.) и ско­ро­сти те­че­ния воды (пе­ре­нос­ной ско­ро­сти). По усло­вию, век­тор ско­ро­сти лодки в си­сте­ме от­сче­та, свя­зан­ной с бе­ре­гом, дол­жен быть пер­пен­ди­ку­ля­рен ему. По­стро­ив «тре­уголь­ник ско­ро­стей» из тео­ре­мы Пи­фа­го­ра для ско­ро­сти лодки от­но­си­тель­но бе­ре­га имеем

ν2 u2

2 спо­соб:

Век­тор ско­ро­сти лодки от­но­си­тель­но воды раз­ло­жим на две ком­по­нен­ты: , где век­тор на­прав­лен па­рал­лель­но бе­ре­гу, а век­тор — пер­пен­ди­ку­ляр­но бе­ре­гу. Для того, чтобы лодка в си­сте­ме от­сче­та, свя­зан­ной с бе­ре­гом, дви­га­лась пер­пен­ди­ку­ляр­но к нему, не­об­хо­ди­мо, чтобы ком­по­нен­та ско­ро­сти лодки от­но­си­тель­но воды вдоль реки в точ­но­сти ком­пен­си­ро­ва­ла ско­рость те­че­ния u. Тогда мо­дуль ско­ро­сти лодки от­но­си­тель­но бе­ре­га будет равен (по тео­ре­ме Пи­фа­го­ра)

Пра­виль­ный ответ: 4.

За­да­ние 1 № 133. На ри­сун­ке пред­став­лен гра­фик за­ви­си­мо­сти пути S ве­ло­си­пе­ди­ста от вре­ме­ни t.

Опре­де­ли­те ин­тер­вал вре­ме­ни после на­ча­ла от­сче­та вре­ме­ни, когда ве­ло­си­пе­дист дви­гал­ся со ско­ро­стью 5 м/с.

1) от 50 с до 70 с

2) от 30 с до 50 с

3) от 10 с до 30 с

4) от 0 до 10 с

Ре­ше­ние.

Для того чтобы по гра­фи­ку за­ви­си­мо­сти пути от вре­ме­ни найти ско­рость дви­же­ния тела в не­ко­то­рый мо­мент, не­об­хо­ди­мо вы­чис­лить тан­генс угла на­кло­на гра­фи­ка в со­от­вет­ству­ю­щей точке. Из гра­фи­ка видно, что в ин­тер­ва­ле от 0 до 10 с ско­рость ве­ло­си­пе­ди­ста была по­сто­ян­на и рав­ня­лась

.

На дру­гих ин­тер­ва­лах ско­рость была иная.

Пра­виль­ный ответ: 4.

За­да­ние 1 № 134. На ри­сун­ке пред­став­лен гра­фик дви­же­ния ав­то­бу­са из пунк­та A в пункт Б и об­рат­но.

Пункт A на­хо­дит­ся в точке х=0, а пункт Б — в точке х=30 км. Чему равна мак­си­маль­ная ско­рость ав­то­бу­са на всем пути сле­до­ва­ния туда и об­рат­но? (Ответ дайте в ки­ло­мет­рах в час.)

Ре­ше­ние.

Для того чтобы по гра­фи­ку за­ви­си­мо­сти ко­ор­ди­на­ты от вре­ме­ни найти ско­рость дви­же­ния тела в не­ко­то­рый мо­мент, не­об­хо­ди­мо вы­чис­лить тан­генс угла на­кло­на гра­фи­ка в со­от­вет­ству­ю­щей точке. Мак­си­маль­ной ско­ро­сти со­от­вет­ству­ет мак­си­маль­ный угол на­кло­на. Из при­ве­ден­но­го гра­фи­ка видно, что с мак­си­маль­ной ско­ро­стью ав­то­бус дви­жет­ся из пунк­та A в пункт Б, ско­рость его при этом равна: 30-0/0,5=60 км/ч.

За­да­ние 1 № 138. На ри­сун­ке при­ве­ден гра­фик за­ви­си­мо­сти про­ек­ции ско­ро­сти тела от вре­ме­ни.

Чему равно уско­ре­ние тела в ин­тер­ва­ле вре­ме­ни от 30 до 40 с? (Ответ дайте в мет­рах в се­кун­ду в квад­ра­те.)

Ре­ше­ние.

Из гра­фи­ка видно, что в ин­тер­ва­ле вре­ме­ни от 30 до 40 с про­ек­ция ско­ро­сти тела не из­ме­ня­лась, а зна­чит, про­ек­ция уско­ре­ния была равна нулю.

За­да­ние 1 № 317. Пло­вец плы­вет по те­че­нию реки. Опре­де­ли­те ско­рость плов­ца от­но­си­тель­но бе­ре­га, если ско­рость плов­ца от­но­си­тель­но воды 0,4 м/с, а ско­рость те­че­ния реки 0,3 м/с. (Ответ дайте в мет­рах в се­кун­ду.)

Ре­ше­ние.

Век­тор ско­ро­сти плов­ца от­но­си­тель­но бе­ре­га есть сумма век­то­ров ско­ро­сти плов­ца от­но­си­тель­но воды и ско­ро­сти те­че­ния реки:. По­сколь­ку пло­вец плы­вет по те­че­нию реки, по­лу­ча­ем, что для ве­ли­чин ско­ро­стей вы­пол­ня­ет­ся со­от­но­ше­ние: 0,4 + 0,3 =0,7 м/с.

За­да­ние 1 № 3354. Че­ты­ре тела дви­га­лись по оси Ох. В таб­ли­це пред­став­ле­на за­ви­си­мость их ко­ор­ди­нат от вре­ме­ни.

t, с

0

1

2

3

4

5

x1, м.

0

2

4

6

8

10

x2, м

0

0

0

0

0

0

x3, м

0

1

4

9

16

25

x4, м

0

2

0

-2

0

2

У ка­ко­го из тел ско­рость могла быть по­сто­ян­на и от­лич­на от нуля?

Ре­ше­ние.

Таб­ли­ца со­дер­жит ин­фор­ма­цию о по­ло­же­ни­ях тел толь­ко в от­дель­ные мо­мен­ты вре­ме­ни. В про­ме­жут­ках между ука­зан­ны­ми вре­ме­на­ми тела могли дви­гать­ся аб­со­лют­но про­из­воль­но. Опре­де­лим тело, ско­рость ко­то­ро­го могла бы быть по­сто­ян­ной и от­лич­ной от нуля. При дви­же­нии с по­сто­ян­ной ско­ро­стью ко­ор­ди­на­та тела за рав­ные про­ме­жут­ки вре­ме­ни из­ме­ня­ет­ся оди­на­ко­во. Из таб­ли­цы видно, что этому свой­ству удо­вле­тво­ря­ет толь­ко пер­вое тело. Зна­чит, ско­рость пер­во­го тела могла быть по­сто­ян­ной и не рав­ной нулю.

За­да­ние 1 № 3357. Вер­то­лет рав­но­мер­но под­ни­ма­ет­ся вер­ти­каль­но вверх. Ка­ко­ва тра­ек­то­рия край­ней точки ло­па­сти вер­то­ле­та в си­сте­ме от­сче­та, свя­зан­ной с кор­пу­сом вер­то­ле­та?

1) пря­мая линия

2) вин­то­вая линия

3) окруж­ность

4) эл­липс

Ре­ше­ние.

Край­няя точка ло­па­сти вер­то­ле­та дви­га­ет­ся по окруж­но­сти во­круг оси вра­ще­ния винта. По­сколь­ку ось вра­ще­ния жест­ко свя­за­на с кор­пу­сом вер­то­ле­та, такую же тра­ек­то­рию опи­сы­ва­ет эта точка и от­но­си­тель­но любой точки кор­пу­са. Пра­виль­ный ответ 3.

За­да­ние 1 № 3539. На каком из гра­фи­ков изоб­ра­же­на воз­мож­ная за­ви­си­мость прой­ден­но­го пути от вре­ме­ни?

1) А

2) Б

3) В

4) Такой гра­фик от­сут­ству­ет

Ре­ше­ние.

Путь — это фи­зи­че­ская ве­ли­чи­на, по­ка­зы­ва­ю­щая прой­ден­ное телом рас­сто­я­ние. Иначе го­во­ря, это длина прой­ден­но­го участ­ка тра­ек­то­рии. По опре­де­ле­нию, путь есть ве­ли­чи­на по­ло­жи­тель­ная, ко­то­рая может толь­ко воз­рас­тать со вре­ме­нем. Этому тре­бо­ва­нию удо­вле­тво­ря­ет толь­ко гра­фик В.

Пра­виль­ный ответ: 3.

За­да­ние 1 № 3540. Ве­ло­си­пе­дист, дви­га­ясь под уклон, про­ехал рас­сто­я­ние между двумя пунк­та­ми со ско­ро­стью, рав­ной 15 км/ч. Об­рат­но он ехал вдвое мед­лен­нее. Ка­ко­ва сред­няя пу­те­вая ско­рость на всем пути? (Ответ дайте в ки­ло­мет­рах в час.)

Ре­ше­ние.

Не­об­хо­ди­мо раз­ли­чать два по­ня­тия: сред­нюю пу­те­вую ско­рость и сред­нюю ско­рость по пе­ре­ме­ще­нию. Сред­няя пу­те­вая ско­рость опре­де­ля­ет­ся как ско­рость про­хож­де­ния пути: . То есть, бук­валь­но, надо весь прой­ден­ный телом путь раз­де­лить на все время, за­тра­чен­ное им на этот путь. Сред­няя пу­те­вая ско­рость пред­став­ля­ет собой число, ска­ляр.

Раз­бе­рем­ся те­перь со вто­рой сред­ней ско­ро­стью. Сред­няя ско­рость по пе­ре­ме­ще­нию  — это век­тор, рав­ный от­но­ше­нию пе­ре­ме­ще­ния ко вре­ме­ни, за ко­то­рое оно со­вер­ше­но: . В нашей кон­крет­ной за­да­че, по­сколь­ку ве­ло­си­пе­дист вер­нул­ся в ис­ход­ную точку, его пе­ре­ме­ще­ние равно нулю, а зна­чит, его сред­няя ско­рость по пе­ре­ме­ще­нию тоже равна нулю.

Вы­чис­лим те­перь сред­нюю пу­те­вую ско­рость. Обо­зна­чим рас­сто­я­ние между двумя пунк­та­ми через ? тогда весь путь прой­ден­ный ве­ло­си­пе­ди­стом равен . На первую по­ло­ви­ну пути ве­ло­си­пе­дист за­тра­тил время . На об­рат­ную до­ро­гу  — время . Все время пути со­ста­ви­ло . Окон­ча­тель­но, на­хо­дим, что сред­няя пу­те­вая ско­рость ве­ло­си­пе­ди­ста равна

.

За­да­ние 1 № 3541. Тело дви­жет­ся пря­мо­ли­ней­но вдоль оси x. На гра­фи­ке пред­став­ле­на за­ви­си­мость ко­ор­ди­на­ты тела от вре­ме­ни. В какой мо­мент вре­ме­ни мо­дуль пе­ре­ме­ще­ния от­но­си­тель­но ис­ход­ной точки имел мак­си­маль­ное зна­че­ние? (Ответ дайте в се­кун­дах.)

Ре­ше­ние.

Из гра­фи­ка видно, что на­чаль­ная ко­ор­ди­на­та тела равна . Мо­дуль пе­ре­ме­ще­ния тела от­но­си­тель­но ис­ход­ной точки в любой мо­мент опре­де­ля­ет­ся вы­ра­же­ни­ем: . По­стро­им гра­фик этой функ­ции и опре­де­лим ее мак­си­мум. Из по­стро­ен­но­го гра­фи­ка ясно, что мо­дуль пе­ре­ме­ще­ния от­но­си­тель­но ис­ход­ной точки мак­си­ма­лен при и равен 20 м.

Ответ: 6 с

За­да­ние 1 № 3544. Дви­же­ние двух ве­ло­си­пе­ди­стов за­да­ны урав­не­ни­я­ми x1 =2 t и x2 =100- 8 t . Най­ди­те ко­ор­ди­на­ту x места встре­чи ве­ло­си­пе­ди­стов. Ве­ло­си­пе­ди­сты дви­га­ют­ся вдоль одной пря­мой. (Ответ дайте в мет­рах.)

Ре­ше­ние.

Встре­ча двух ве­ло­си­пе­ди­стов озна­ча­ет, что у них в не­ко­то­рый мо­мент вре­ме­ни сов­па­дут ко­ор­ди­на­ты. Опре­де­лим, когда имен­но про­изой­дет встре­ча, для этого решим урав­не­ние . Те­перь не со­став­ля­ет труда опре­де­лить ко­ор­ди­на­ту места встре­чи:

За­да­ние 1 № 3545.

На ри­сун­ке при­ве­ден гра­фик дви­же­ния x(t) элек­тро­ка­ра. Опре­де­ли­те по этому гра­фи­ку путь, про­де­лан­ный элек­тро­ка­ром за ин­тер­вал вре­ме­ни от t1 = 1 c до t2 = 4 c. (Ответ дайте в мет­рах.)

Ре­ше­ние.

Путь — это фи­зи­че­ская ве­ли­чи­на, по­ка­зы­ва­ю­щая прой­ден­ное телом рас­сто­я­ние. Иначе го­во­ря, это длина прой­ден­но­го участ­ка тра­ек­то­рии. Из гра­фи­ка видно, что в ин­тер­ва­ле вре­ме­ни от до элек­тро­кар дви­гал­ся в по­ло­жи­тель­ном на­прав­ле­нии оси . При этом его ко­ор­ди­на­та из­ме­ни­лась на . По­след­нюю, чет­вер­тую, се­кун­ду элек­тро­кар дви­гал­ся в об­рат­ном на­прав­ле­нии, из­ме­не­ние его ко­ор­ди­на­ты на этом участ­ке равно . Таким об­ра­зом, путь, прой­ден­ный ма­шин­кой за ин­тер­вал вре­ме­ни от до равен .

За­да­ние 1 № 3548. Пе­ше­ход идет по пря­мо­ли­ней­но­му участ­ку до­ро­ги со ско­ро­стью v. Нав­стре­чу ему дви­жет­ся ав­то­бус со ско­ро­стью 10v. С какой ско­ро­стью дол­жен дви­гать­ся нав­стре­чу пе­ше­хо­ду ве­ло­си­пе­дист, чтобы мо­дуль его ско­ро­сти от­но­си­тель­но пе­ше­хо­да и ав­то­бу­са был оди­на­ков?

1)

2)

3)

4)

Ре­ше­ние.

Обо­зна­чим ис­ко­мую ско­рость ве­ло­си­пе­ди­ста через . Тогда, как видно из ри­сун­ка, ве­ло­си­пе­дист при­бли­жа­ет­ся к пе­ше­хо­ду со ско­ро­стью , а к ав­то­бу­су  — со ско­ро­стью .

При­рав­няв эти две ско­ро­сти, на­хо­дим тре­бу­е­мую ско­рость ве­ло­си­пе­ди­ста:

Пра­виль­ный ответ: 1.

За­да­ние 1 № 3549. Па­ро­ход дви­жет­ся по реке про­тив те­че­ния со ско­ро­стью 5 м/с от­но­си­тель­но бе­ре­га. Опре­де­ли­те ско­рость те­че­ния реки, если ско­рость па­ро­хо­да от­но­си­тель­но бе­ре­га при дви­же­нии в об­рат­ном на­прав­ле­нии равна 8 м/с. (Ответ дайте в мет­рах в се­кун­ду.)

Ре­ше­ние.

Обо­зна­чим ис­ко­мую ско­рость те­че­ния реки через , а ско­рость па­ро­хо­да в сто­я­чей воде  — через . Тогда можно со­ста­вить сле­ду­ю­щие урав­не­ния. Ско­рость па­ро­хо­да вниз по те­че­нию равна . Ско­рость па­ро­хо­да вверх по те­че­нию: . Решая си­сте­му из двух этих урав­не­ний, для ско­ро­сти те­че­ния воды имеем .

За­да­ние 1 № 3734.

Ма­те­ри­аль­ная точка дви­жет­ся вдоль оси OX. На ри­сун­ке пред­став­лен гра­фик за­ви­си­мо­сти про­ек­ции ско­ро­сти этой ма­те­ри­аль­ной точки на ось OX от вре­ме­ни. Какой из при­ве­ден­ных ниже гра­фи­ков может со­от­вет­ство­вать за­ви­си­мо­сти ко­ор­ди­на­ты ма­те­ри­аль­ной точки от вре­ме­ни?

1) 1

2) 2

3) 3

4) 4

Ре­ше­ние.

Из гра­фи­ка видно, что про­ек­ция ско­ро­сти ма­те­ри­аль­ной точки на ось OX по­ло­жи­тель­на и по­сто­ян­на, а зна­чит, точка дви­жет­ся рав­но­мер­но и в по­ло­жи­тель­ном на­прав­ле­нии оси OX. Един­ствен­ный гра­фик, удо­вле­тво­ря­ю­щий обоим этим тре­бо­ва­ни­ям, — это гра­фик под но­ме­ром 1.

Пра­виль­ный ответ: 1.

За­да­ние 1 № 3783. На ри­сун­ке пред­став­ле­ны гра­фи­ки за­ви­си­мо­сти прой­ден­но­го пути от вре­ме­ни для двух тел. На какую ве­ли­чи­ну Δv ско­рость вто­ро­го тела v2 боль­ше ско­ро­сти пер­во­го тела v1? (Ответ дайте в мет­рах в се­кун­ду.)

Ре­ше­ние.

Из гра­фи­ка видно, что для обоих тел прой­ден­ный путь ли­ней­но за­ви­сит от вре­ме­ни, а зна­чит, оба тела дви­га­лись с по­сто­ян­ны­ми по ве­ли­чи­не ско­ро­стя­ми. Мо­дуль ско­ро­сти пер­во­го тела равен . Ско­рость же вто­ро­го тела: . Сле­до­ва­тель­но, ско­рость вто­ро­го тела боль­ше ско­ро­сти пер­во­го тела на ве­ли­чи­ну

За­да­ние 1 № 3867.

Тела 1 и 2 дви­га­ют­ся вдоль оси x. На ри­сун­ке изоб­ра­же­ны гра­фи­ки за­ви­си­мо­сти ко­ор­ди­нат дви­жу­щих­ся тел 1 и 2 от вре­ме­ни t. Чему равен мо­дуль ско­ро­сти 1 от­но­си­тель­но тела 2? (Ответ дайте в мет­рах в се­кун­ду.)

Ре­ше­ние.

Ис­поль­зуя гра­фик, опре­де­лим про­ек­ции ско­ро­стей обоих тел. Для тела 1 имеем

Для тела 2:

Таким об­ра­зом мо­дуль ско­ро­сти од­но­го тела от­но­си­тель­но дру­го­го равен

За­да­ние 1 № 4077. Ав­то­бус везёт пас­са­жи­ров по пря­мой до­ро­ге со ско­ро­стью 10 м/с. Пас­са­жир рав­но­мер­но идёт по са­ло­ну ав­то­бу­са со ско­ро­стью 1 м/с от­но­си­тель­но ав­то­бу­са, дви­га­ясь от зад­ней двери к ка­би­не во­ди­те­ля. Чему равен мо­дуль ско­ро­сти пас­са­жи­ра от­но­си­тель­но до­ро­ги? (Ответ дайте в мет­рах в се­кун­ду.)

Ре­ше­ние.

Со­глас­но за­ко­ну сло­же­ния ско­ро­стей, ско­рость тела от­но­си­тель­но «не­по­движ­ной си­сте­мы отсчёта» свя­за­на со ско­ро­стью этого тела от­но­си­тель­но «по­движ­ной си­сте­мы отсчёта» и ско­ро­стью дви­же­ния «по­движ­ной с. о.» от­но­си­тель­но «не­по­движ­ной» при по­мо­щи сле­ду­ю­ще­го со­от­но­ше­ния: В дан­ном слу­чае, так как пас­са­жир дви­га­ет­ся вдоль ав­то­бу­са по на­прав­ле­нию его дви­же­ния, для ско­ро­сти пас­са­жи­ра от­но­си­тель­но до­ро­ги имеем:

Ответ: 11 м/с

За­да­ние 1 № 4186. Ко­ор­ди­на­та ма­те­ри­аль­ной точки из­ме­ня­ет­ся с те­че­ни­ем вре­ме­ни по за­ко­ну x=3-2t. Какой из при­ведённых ниже гра­фи­ков со­от­вет­ству­ет этой за­ви­си­мо­сти?

1) 1

2) 2

3) 3

4) 4

Ре­ше­ние.

Из за­ви­си­мо­сти видно, что ко­ор­ди­на­та убы­ва­ет со вре­ме­нем, при этом в на­чаль­ный мо­мент вре­ме­ни ко­ор­ди­на­та равна а в на­ча­ло ко­ор­ди­нат ма­те­ри­аль­ная точка по­па­да­ет в мо­мент вре­ме­ни: Таким об­ра­зом, за­ви­си­мо­сти со­от­вет­ству­ет гра­фик под но­ме­ром 4.

Пра­виль­ный ответ: 4.

За­да­ние 1 № 4221. Ко­ор­ди­на­та ма­те­ри­аль­ной точки из­ме­ня­ет­ся с те­че­ни­ем вре­ме­ни по за­ко­ну . x=3+ 2t. Какой из при­ведённых ниже гра­фи­ков со­от­вет­ству­ет этой за­ви­си­мо­сти?

1)

2)

3)

4)

Ре­ше­ние.

Из за­ви­си­мо­сти видно, что ко­ор­ди­на­та воз­рас­та­ет со вре­ме­нем, при этом в на­чаль­ный мо­мент вре­ме­ни ко­ор­ди­на­та равна , а в мо­мент вре­ме­ни ко­ор­ди­на­та равна . Таким об­ра­зом, за­ви­си­мо­сти со­от­вет­ству­ет гра­фик под но­ме­ром 3.

Пра­виль­ный ответ: 3.

За­да­ние 1 № 4409. По плос­ко­сти дви­жут­ся че­ты­ре то­чеч­ных тела —А, Б, В, Г. x=1+t., y=2 t, и , тра­ек­то­рии ко­то­рых изоб­ра­же­ны на ри­сун­ке. За­ви­си­мо­сти ко­ор­ди­нат од­но­го из этих тел от вре­ме­ни имеют вид и . Это тело обо­зна­че­но бук­вой

1) А

2) Б

3) В

4) Г

Ре­ше­ние.

На за­ви­си­мость ко­ор­ди­нат от вре­ме­ни и можно смот­реть как на па­ра­мет­ри­че­ское за­да­ние пря­мой на плос­ко­сти .

Вы­ра­зим время из пер­во­го урав­не­ния и под­ста­вим во вто­рое: . Из ри­сун­ка видно, что урав­не­нию со­от­вет­ству­ет пря­мая .

Пра­виль­ный ответ: 3

За­да­ние 1 № 4444. По плос­ко­сти дви­жут­ся че­ты­ре то­чеч­ных тела — А,Б В, и Г, тра­ек­то­рии ко­то­рых изоб­ра­же­ны на ри­сун­ке. За­ви­си­мо­сти ко­ор­ди­нат од­но­го из этих тел от вре­ме­ни имеют вид x=2t.и . y=1+ t. Это тело обо­зна­че­но бук­вой

1) А

2) Б

3) В

4) Г

Ре­ше­ние.

На за­ви­си­мость ко­ор­ди­нат от вре­ме­ни и можно смот­реть как на па­ра­мет­ри­че­ское за­да­ние пря­мой на плос­ко­сти .

Вы­ра­зим время из пер­во­го урав­не­ния и под­ста­вим во вто­рое: . Из ри­сун­ка видно, что урав­не­нию со­от­вет­ству­ет пря­мая A.

Пра­виль­ный ответ: 1

За­да­ние 1 № 4934. Два ав­то­мо­би­ля дви­жут­ся по пря­мо­му шоссе: пер­вый со ско­ро­стью , вто­рой со ско­ро­стью от­но­си­тель­но шоссе. Ско­рость пер­во­го ав­то­мо­би­ля от­но­си­тель­но вто­ро­го равна

1)

2)

3)

4)

Ре­ше­ние.

Ско­рость пер­во­го ав­то­мо­би­ля от­но­си­тель­но вто­ро­го равна

.

Пра­виль­ный ответ: 2.

Равномерное прямолинейное движение

1. Равномерное прямолинейное движение — движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Слова «любые равные» означают, что за каждый час, за каждую минуту, за каждые 30 минут, за каждую секунду, за каждую долю секунды тело совершает одинаковые перемещения.

Равномерное движение — идеализация, поскольку практически невозможно создать такие условия, чтобы движение тела было равномерным в течение достаточно большого промежутка времени. Реальное движение может лишь приближаться к равномерному движению с той или иной степенью точности.

2. Изменение положения тела в пространстве при равномерном движении может происходить с разной быстротой. Это свойство движения — его «быстрота» характеризуется физической величиной, называемой скоростью.

Скоростью равномерного прямолинейного движения называют векторную физическую величину, равную отношению перемещения ко времени, за которое это перемещение произошло.

Если за время ​( t )​ тело совершило перемещение ​( vec{s} )​, то скорость его движения ​( vec{v} )​ равна ​( vec{v}=frac{vec{s}}{t} )​.

Единица скорости: ( [,v,]=frac{[,s,]}{[,t,]} ); ( [,v,]=frac{1,м}{1,с}=1frac{м}{с} ). За единицу скорости принимается 1 м/с — скорость такого равномерного движения, при котором тело за 1 с совершает перемещение 1 м.

Зная скорость равномерного движения, можно найти перемещение за любой промежуток времени: ( vec{s}=vec{v}t ). Вектор скорости и вектор перемещения направлены в одну сторону — в сторону движения тела.

3. Поскольку основной задачей механики является определение в любой момент времени положения тела, т.е. его координаты, необходимо записать уравнение зависимости координаты тела от времени при равномерном движении.

Пусть ( vec{s} ) — перемещение тела (рис. 11). Направим координатную ось ОХ по направлению перемещения. Найдем проекцию перемещения на координатную ось ОХ. На рисунке ​( x_0 )​ — координата начальной точки перемещения, ​( x )​ — координата конечной точки перемещения. Проекция перемещения равна разности координат конечной и начальной точек: ​( vec{s}_x=x-x_0 )​. С другой стороны, проекция перемещения равна проекции скорости, умноженной на время, т.е. ( vec{s}_x=vec{v}_xt ). Откуда ​( x-x_0=vec{v}_xt )​ или ( x=x_0+vec{v}_xt ). Если начальная координата ​( x_0 )​ = 0, то ​( x=vec{v}_xt )​.

Полученная формула позволяет определить координату тела при равномерном движении в любой момент времени, если известны начальная координата и проекция скорости движения.

Проекция скорости может быть как положительной, так и отрицательной. Проекция скорости положительна, если направление движения совпадает с положительным направлением оси ОХ (рис. 12). В этом случае ​( x>x_0 )​. Проекция скорости отрицательна, если тело движется против положительного направления оси ОХ (рис. 12). В этом случае ( x<x_0 ).

4. Зависимость координаты от времени можно представить графически.

Предположим, что тело движется из начала координат вдоль положительного направления оси ОХ с постоянной скоростью. Проекция скорости на ось ОХ равна 4 м/с. Уравнение движения в этом случае имеет вид: ​( x )​ = 4 м/с · ​( t )​. Зависимость координаты от времени — линейная. Графиком такой зависимости является прямая линия, проходящая через начало координат (рис. 13).

Для того чтобы её построить, необходимо иметь две точки: одна из них ​( t )​ = 0 и ​( x )​ = 0, а другая ​( t )​ = 1 с, ​( x )​ = 4 м. На рисунке приведён график зависимости координаты от времени, соответствующий данному уравнению движения.

Если в начальный момент времени координата тела ​( x_0 )​ = 2 м, а проекция его скорости ​( v_x )​ = 4 м/с, то уравнение движения имеет вид: ​( x )​ = 2 м + 4 м/с · ​( t )​. Это тоже линейная зависимость координаты от скорости, и её графиком является прямая линия, проходящая через точку, для которой ​( t )​ = 0, ​( x )​ = 2 м (рис. 14).

В том случае, если проекция скорости отрицательна, уравнение движения имеет вид: ( x )​ = 2 м – 4 м/с · ​( t )​. График зависимости координаты такого движения от времени представлен на рисунке 15.

Таким образом, движение тела может быть описано аналитически, т.е. с помощью уравнения движения (уравнения зависимости координаты тела от времени), и графически, т.е. с помощью графика зависимости координаты тела от времени.

График зависимости проекции скорости равномерного прямолинейного движения от времени представлен на рисунке 16.

5. Ниже приведён пример решения основной задачи кинематики — определения положения тела в некоторый момент времени.

Задача. Два автомобиля движутся навстречу друг другу равномерно и прямолинейно: один со скоростью 15 м/с, другой — со скоростью 12 м/с. Определите время и место встречи автомобилей, если в начальный момент времени расстояние между ними равно 270 м.

При решении задачи целесообразно придерживаться следующей последовательности действий:

  1. Кратко записать условие задачи.
  2. Проанализировать ситуацию, описанную в условии задачи:
    — выяснить, можно ли принять движущиеся тела за материальные точки;
    — сделать рисунок, изобразив на нём векторы скорости;
    — выбрать систему отсчёта — тело отсчёта, направления координатных осей, начало отсчёта координат, начало отсчёта времени; записать начальные условия (значения координат в начальный момент времени) для каждого тела.
  3. Записать в общем виде уравнение движения в векторной форме и для проекций на координатные оси.
  4. Записать уравнение движения для каждого тела с учётом начальных условий и знаков проекций скорости.
  5. Решить задачу в общем виде.
  6. Подставить в формулу значения величин и выполнить вычисления.
  7. Проанализировать ответ.

Применим эту последовательность действий к приведённой выше задаче.

Дано: ​( v_1 )​ = 15 м/с  ​( v_2 ) ​= 12 м/с  ​( l ) ​= 270 м. Найти: ​( t )​ – ?   ( x)​ – ?

Автомобили можно считать материальными точками, поскольку расстояние между ними много больше их размеров и размерами автомобилей можно пренебречь

Система отсчёта связана с Землёй, ось ​( Ox )​ направлена в сторону движения первого тела, начало отсчёта координаты — т. ​( O )​ — положение первого тела в начальный момент времени.

Начальные условия: ​( t )​ = 0; ​( x_{01} )​ = 0; ( x_{02} ) = 270.

Уравнение в общем виде: ​( vec{s}=vec{v}t )​; ​( x=x_0+v_xt ).

Уравнения для каждого тела с учётом начальных условий: ​( x_1=v_1t )​; ​( x_2=l-v_2t )​. В месте встречи тел ​( x_1=x_2 ); следовательно: ​( v_1t=l-v_2t )​. Откуда ​( t=frac{l}{v_1+v_2}cdot t )​. Подставив значение времени в уравнение для координаты первого автомобиля, получим значение координаты места встречи автомобилей: ​( x )​ = 150 м.

Содержание

  • ПРИМЕРЫ ЗАДАНИЙ
    • Часть 1
    • Часть 2
  • Ответы

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Чему равна проекция скорости равномерно движущегося автомобиля, если проекция его перемещения за 4 с равна 80 м?

1) 320 м/с
2) 80 м/с
3) 20 м/с
4) 0,05 м/с

2. Чему равен модуль перемещения мухи за 0,5 мин., если она летит со скоростью 5 м/с?

1) 0,25 м
2) 6 м
3) 10 м
4) 150 м

3. Автомобиль «Рено» проезжает за 1 мин. путь 1,2 км. Автомобиль «Пежо» проезжает за 20 с путь 0,2 км. Сравните значения скорости «Рено» — ​( v_1 )​ и скорости «Пежо» — ( v_2 ).

1) ​( v_1=v_2 )
2) ​( v_1=2v_2 )
3) ( 2v_1=v_2 )
4) ( 1,2v_1=10v_2 )

4. На рисунке приведена столбчатая диаграмма. На ней представлены значения пути, которые при равномерном движении пролетают за одно и то же время муха (1) и воробей (2). Сравните их скорости ​( v_1 )​ и ( v_2 ).

1) ​( v_1=v_2 )
2) ​( v_1=2v_2 )
3) ( 3v_1=v_2 )
4) ( 2v_1=v_2 )

5. На рисунке приведён график зависимости модуля скорости равномерного движения от времени. Модуль перемещения тела за 2 с равен

1) 20 м
2) 40 м
3) 80 м
4) 160 м

6. На рисунке приведён график зависимости пути, пройденного телом при равномерном движении от времени. Модуль скорости тела равен

1) 0,1 м/с
2) 10 м/с
3) 20 м/с
4) 40 м/с

7. На рисунке приведены графики зависимости пути от времени для трёх тел. Сравните значения скорости ​( v_1 )​, ( v_2 ) и ( v_3 ) движения этих тел.

1) ​( v_1=v_2=v_3 )
2) ( v_1>v_2>v_3 )
3) ( v_1<v_2<v_3 )
4) ​( v_1=v_2 ), ( v_3<v_1 )

8. Какой из приведённых ниже графиков представляет собой график зависимости пути от времени при равномерном движении тела?

9. На рисунке приведён график зависимости координаты тела от времени. Чему равна координата тела в момент времени 6 с?

1) 9,8 м
2) 6 м
3) 4 м
4) 2 м

10. Уравнение движения тела, соответствующее приведённому в задаче 9 графику, имеет вид

1) ​( x=1t )​ (м)
2) ( x=2+3t ) (м)
3) ( x=2-1t ) (м)
4) ( x=4+2t ) (м)

11. Установите соответствие между величинами в левом столбце и зависимостью значения величины от выбора системы отсчёта в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) перемещение
Б) время
B) скорость

ЗАВИСИМОСТЬ ОТ ВЫБОРА СИСТЕМЫ ОТСЧЁТА
1) зависит
2) не зависит

12. На рисунке приведён график зависимости координаты тела от времени. Какие выводы можно сделать из анализа графика? Укажите два правильных ответа.

1) тело двигалось все время в одну сторону
2) в течение четырёх секунд модуль скорости тела уменьшался, а затем увеличивался
3) проекция скорости тела все время была положительной
4) проекция скорости тела в течение четырёх секунд была положительной, а затем — отрицательной
5) в момент времени 4 с тело остановилось

Часть 2

13. Два автомобиля движутся друг за другом равномерно и прямолинейно: один со скоростью 20 м/с, другой — со скоростью 15 м/с. Через какое время второй автомобиль догонит первый, если в начальный момент времени расстояние между ними равно 100 м?

Ответы

Равномерное прямолинейное движение

3 (59.44%) 144 votes

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Равнодушное отношение к детям сочинение
  • Равнодушие это паралич души сочинение палата номер 6
  • Равнодушие это паралич души преждевременная смерть сочинение рассуждение
  • Равнодушие это определение для сочинения
  • Равнодушие тезис для сочинения

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии