И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез
биополимеров (нуклеиновых кислот, белков) на матрице — нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.
Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом
«генетическом языке». Скоро вы все поймете — мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК
и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится — перерисуйте его себе
Возьмем 3 абстрактных нуклеотида ДНК (триплет) — АТЦ. На иРНК этим нуклеотидам будут соответствовать — УАГ (кодон иРНК).
тРНК, комплементарная иРНК, будет иметь запись — АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения
будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.
Репликация ДНК — удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio — удвоение)
Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по
принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) — в Ц (цитозин).
Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них
содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между
дочерними клетками.
Транскрипция (лат. transcriptio — переписывание)
Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит
в соответствии с принципом комплементарности азотистых оснований: А — У, Т — А, Г — Ц, Ц — Г (загляните в «генетический словарик»
выше).
До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК — промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух
цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.
Транскрипция осуществляется в несколько этапов:
- Инициация (лат. injicere — вызывать)
- Элонгация (лат. elongare — удлинять)
- Терминация (лат. terminalis — заключительный)
Образуется несколько начальных кодонов иРНК.
Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК
быстро растет.
Достигая особого участка цепи ДНК — терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.
Трансляция (от лат. translatio — перенос, перемещение)
Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень — в процесс трансляции.
Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность
аминокислот.
Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК. Трансляцию можно разделить на несколько стадий:
- Инициация
- Элонгация
- Терминация
Информационная РНК (иРНК, синоним — мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц.
Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.
Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту,
соответствующую кодону АУГ — метионин.
Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз.
Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.
Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) — У (урацил), Г (гуанин) — Ц (цитозин).
В основе этого также лежит принцип комплементарности.
Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу
иРНК одновременно — образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.
Синтез белка — полипептидной цепи из аминокислот — в определенный момент завершатся. Сигналом к этому служит попадание
в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция — завершить синтез белка.
Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что
кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй — из верхнего горизонтального,
третий — из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота
Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА — Глн. Попробуйте самостоятельно найти
аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.
Кодону ГЦУ соответствует аминокислота — Ала, ААА — Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк:
это один из трех нонсенс-кодонов, завершающих синтез белка.
Примеры решения задачи №1
Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК),
приведенной вверху.
«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов
во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны
соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»
Объяснение:
По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити
ДНК: А-Т, Т-А, Г-Ц, Ц-Г.
Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК:
А-У, Т-А, Г-Ц, Ц-Г.
Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК:
А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что
тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).
Пример решения задачи №2
«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет
следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется
на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону
тРНК»
Обратите свое пристальное внимание на слова «Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой
синтезируется участок центральной петли тРНК «. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу
синтезировать с ДНК фрагмент тРНК — другой подход здесь будет считаться ошибкой.
Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было
в предыдущей задаче), поэтому не следует разделять их запятой — мы записываем их линейно через тире.
Третий триплет ДНК — АЦГ соответствует антикодону тРНК — УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК,
так что переведем антикодон тРНК — УГЦ в кодон иРНК — АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ — Тре.
Пример решения задачи №3
Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и
аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной
молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.
Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК
соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК — так что их тоже по 50.
По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%.
100% — (20%+20%) = 60% — столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то
на каждый приходится по 30%.
Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы?
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Философ Фридрих Энгельс в своем знаменитом определении сказал, что жизнь является способом существования белковых тел. В каждом живом организме безостановочно идет сложный процесс, требующий немалых энергетических затрат, — синтезируются и созревают белки. Общая схема биосентеза белка такова: ДНК — иРНК — белок.
Биосинтез белка делится на два главных этапа. Во-первых, из аминокислот синтезируется полипептидная цепь. Этот этап проходит на рибосомах при участии молекул двух типов РНК, информационной и транспортной. Во-вторых, с полипептидной цепью происходят посттрансляционные модификации. Образно представить весь этот процесс можно как крошечную железную дорогу, по которой постоянно, от одной станции к другой, снуют паровозы с прицепленными гружеными вагонами.
Трансляция
1. Синтез полипептидных белковых цепей по матрице иРНК, который производится рибосомами, называется трансляцией.
2. Полисома — система рибосом в виде цепи, используемая для увеличения количества производимых белков. Через нее может проходить одна и та же иРНК.
3. Первым делом иРНК должна получить некую информацию. Транскрипция — процесс перенесения информации с ДНК на иРНК в ядре по принципу комплементарности. Далее иРНК идет в цитоплазму для синтеза белка на ее матрице.
4. Как ДНК проходит подготовку к транскрипции? При помощи ферментов двойная связь ДНК раскручивается, разрываются водородные связи.
5. Значительная часть ДНК, как и ее копия иРНК являются некодирующими. Кодирующие части иРНК называют экзонами, некодирующие интронами. Для «отбрасывания» некодирующих участков происходит сплайсинг — вырезание интронов с помощью ферментов.
6. Как аминокислоты доставляются к рибосомам? С помощью тРНК, по форме напоминающей клеверный лист и состоящей из 70–90 нуклеотидов.
7. Сколько видов тРНК в клетке? Столько же, сколько кодонов (триплетов), шифрующих аминокислоты — 64. Кодоны — это триплеты нуклеотидов в иРНК. Пример триплета — АГЦ (аденин, гуанин, цитозин). Каждое азотистое основание, например, аденин, входит в состав какого-то нуклеотида.
8. Вверху в тРНК имеется триплет, присоединяющийся к кодонам иРНК. Это антикодон.
9. Фермент кодаза присоединяет аминокислоту к тРНК. Причем он присоединяет строго ту аминокислоту, которая кодируется кодоном иРНК — триплетом, комплементарным антикодону тРНК.
10. Для связывания одной аминокислоты с тРНК тратится одна молекула АТФ.
11. Аминокислота отрывается от тРНК в тот момент, когда тРНК подходит к рибосоме и ее антикодон узнает кодон иРНК по принципу комплементарности.
12. В акцепторном участке рибосомы приходящая тРНК присоединяется к своему кодону иРНК, причем аминокислота присоединяет к себе растущую цепь белка — образуется пептидная связь.
13. В донорный участок рибосомы тРНК перемещается вместе с кодоном иРНК и с аминокислотой, цепь удлиняется на одну аминокислоту. На место данной тРНК в акцепторный участок идет новая тРНК.
14. Разные полипептидные цепи отделяются друг от друга своеобразными «знаками препинания», тремя триплетами — УАА, УАГ, УГА. Ни одна тРНК не имеет антикодонов, комплементарных данным триплетам, потому она не сможет поступить в акцепторный участок.
15. Какая аминокислота стоит в начале синтезируемого полипептида в рибосоме прокариот? Формилметионин, она соответствует антикодону АУГ иРНК. Данная измененная форма аминокислоты метионина является «заглавной буквой» фразы и прямиком следует в донорный участок рибосомы. С нее начинается синтез любой белковой цепи у бактерий, митохондрий, хлоропластов. У эукариот гены ядра не кодируют эту аминокислоту. После того как синтез полипептидной цепи закончен, формилметионин отщепляется от нее и отсутствует в готовом белке.
16. Что происходит с тРНК после выполнения ее роли? С помощью фермента кодазы к ней будет присоединена та же аминокислота, и тРНК продолжит функционировать.
17. Посттрансляционная модификация — формирование структур белка: вторичной, третичной и четвертичной. В этом процессе участвуют ферменты и затрачивается энергия.
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Фрагмент цепи иРНК имеет следующую последовательность нуклеотидов: ЦУАЦААГГЦУАУ. Определите последовательность нуклеотидов на ДНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода.
Генетический код (иРНК)
Первое
основание |
Второе основание | Третье
основание |
|||
У | Ц | А | Г | ||
У |
Фен Фен Лей Лей |
Сер Сер Сер Сер |
Тир Тир — — |
Цис Цис — Три |
У Ц А Г |
Ц |
Лей Лей Лей Лей |
Про Про Про Про |
Гис Гис Глн Глн |
Арг Арг Арг Арг |
У Ц А Г |
А |
Иле Иле Иле Мет |
Тре Тре Тре Тре |
Асн Асн Лиз Лиз |
Сер Сер Арг Арг |
У Ц А Г |
Г |
Вал Вал Вал Вал |
Ала Ала Ала Ала |
Асп Асп Глу Глу |
Гли Гли Гли Гли |
У Ц А Г |
Правила пользования таблицей
Первый нуклеотид в триплете берётся из левого вертикального ряда; второй — из верхнего горизонтального ряда; третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.
2
Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая).
5’-ЦГААГГТГАЦААТГТ-3’
3’-ГЦТТЦЦАЦТГТТАЦА-5’
Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.
Генетический код (иРНК)
Первое
основание |
Второе основание | Третье
основание |
|||
У | Ц | А | Г | ||
У |
Фен Фен Лей Лей |
Сер Сер Сер Сер |
Тир Тир — — |
Цис Цис — Три |
У Ц А Г |
Ц |
Лей Лей Лей Лей |
Про Про Про Про |
Гис Гис Глн Глн |
Арг Арг Арг Арг |
У Ц А Г |
А |
Иле Иле Иле Мет |
Тре Тре Тре Тре |
Асн Асн Лиз Лиз |
Сер Сер Арг Арг |
У Ц А Г |
Г |
Вал Вал Вал Вал |
Ала Ала Ала Ала |
Асп Асп Глу Глу |
Гли Гли Гли Гли |
У Ц А Г |
Правила пользования таблицей
Первый нуклеотид в триплете берётся из левого вертикального ряда; второй — из верхнего горизонтального ряда и третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.
Источник: Демонстрационная версия ЕГЭ—2020 по биологии
3
Фрагмент начала гена имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
5’ − ТААТГАЦЦГЦАТАТАТЦЦАТ −3’
3’ − АТТАЦТГГЦГТАТАТАГГТА −5’
Ген содержит информативную и неинформативную части для трансляции. Информативная часть гена начинается с триплета, кодирующего аминокислоту Мет. С какого нуклеотида начинается информативная часть гена? Определите последовательность аминокислот во фрагменте полипептидной цепи. Ответ поясните. Для выполнения задания используйте таблицу генетического кода.
Генетический код (иРНК)
Первое
основание |
Второе основание | Третье
основание |
|||
---|---|---|---|---|---|
У | Ц | А | Г | ||
У | Фен
Фен Лей Лей |
Сер
Сер Сер Сер |
Тир
Тир — — |
Цис
Цис — Три |
У
Ц А Г |
Ц | Лей
Лей Лей Лей |
Про
Про Про Про |
Гис
Гис Глн Глн |
Арг
Арг Арг Арг |
У
Ц А Г |
А | Иле
Иле Иле Мет |
Тре
Тре Тре Тре |
Асн
Асн Лиз Лиз |
Сер
Сер Арг Арг |
У
Ц А Г |
Г | Вал
Вал Вал Вал |
Ала
Ала Ала Ала |
Асп
Асп Глу Глу |
Гли
Гли Гли Гли |
У
Ц А Г |
Правила пользования таблицей
Первый нуклеотид в триплете берётся из левого вертикального ряда, второй — из верхнего горизонтального ряда и третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.
Раздел: Основы генетики
4
Фрагмент начала гена имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
5’ − АЦАТГГГАТЦЦТАТАТЦГЦГ − 3’
3’ − ТГТАЦЦЦТАГГАТАТАГЦГЦ − 5’
Ген содержит информативную и неинформативную части для трансляции. Информативная часть гена начинается с триплета, кодирующего аминокислоту Мет. С какого нуклеотида начинается информативная часть гена? Определите последовательность аминокислот во фрагменте полипептидной цепи. Ответ поясните. Для выполнения задания используйте таблицу генетического кода.
Генетический код (иРНК)
Первое
основание |
Второе основание | Третье
основание |
|||
---|---|---|---|---|---|
У | Ц | А | Г | ||
У | Фен
Фен Лей Лей |
Сер
Сер Сер Сер |
Тир
Тир — — |
Цис
Цис — Три |
У
Ц А Г |
Ц | Лей
Лей Лей Лей |
Про
Про Про Про |
Гис
Гис Глн Глн |
Арг
Арг Арг Арг |
У
Ц А Г |
А | Иле
Иле Иле Мет |
Тре
Тре Тре Тре |
Асн
Асн Лиз Лиз |
Сер
Сер Арг Арг |
У
Ц А Г |
Г | Вал
Вал Вал Вал |
Ала
Ала Ала Ала |
Асп
Асп Глу Глу |
Гли
Гли Гли Гли |
У
Ц А Г |
Правила пользования таблицей
Первый нуклеотид в триплете берётся из левого вертикального ряда, второй — из верхнего горизонтального ряда и третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.
5
Фрагмент начала гена имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
5’ − ЦТАТГААТАЦТГАТЦТТАГТ − 3’
3’ − ГАТАЦТТАТГАЦТАГААТЦА − 5’
Ген содержит информативную и неинформативную части для трансляции. Информативная часть гена начинается с триплета, кодирующего аминокислоту Мет. С какого нуклеотида начинается информативная часть гена? Определите последовательность аминокислот во фрагменте полипептидной цепи. Ответ поясните. Для выполнения задания используйте таблицу генетического кода.
Генетический код (иРНК)
Первое
основание |
Второе основание | Третье
основание |
|||
---|---|---|---|---|---|
У | Ц | А | Г | ||
У | Фен
Фен Лей Лей |
Сер
Сер Сер Сер |
Тир
Тир — — |
Цис
Цис — Три |
У
Ц А Г |
Ц | Лей
Лей Лей Лей |
Про
Про Про Про |
Гис
Гис Глн Глн |
Арг
Арг Арг Арг |
У
Ц А Г |
А | Иле
Иле Иле Мет |
Тре
Тре Тре Тре |
Асн
Асн Лиз Лиз |
Сер
Сер Арг Арг |
У
Ц А Г |
Г | Вал
Вал Вал Вал |
Ала
Ала Ала Ала |
Асп
Асп Глу Глу |
Гли
Гли Гли Гли |
У
Ц А Г |
Правила пользования таблицей
Первый нуклеотид в триплете берётся из левого вертикального ряда, второй — из верхнего горизонтального ряда и третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.
Пройти тестирование по этим заданиям
Как решать задачи на биосинтез белка?
Как решать задачи на биосинтез белка?
Чтобы сдать ЕГЭ по биологии на 80+ баллов, нужно решить задания не только первой, но и второй части КИМа. Традиционно, самые «решаемые» задания – это №27, №28. За них можно легко получить баллы, если знать несколько основных правил и принципов. О них мы и будем говорить сегодня.
Основные правила
Итак, мы начинаем знакомство с основными правилами, которые важно использовать при работе с заданием №27.
- Синтез новых цепей идет с транскрибируемой цепи ДНК
Вспомните: молекула ДНК представляет собой двойную спираль, то есть состоит из двух цепей. Они имеют собственные названия и направления синтеза. Одна из цепей – транскрибируемая (матричная), другая – смысловая (кодирующая). Транскрибируемая цепь строится в направлении от 3’-конца к 5’-концу, смысловая – от 5’-конца к 3’-концу.
Если в задании нужно синтезировать новую цепь, например иРНК, то в качестве матрицы (основы) для синтеза необходимо использовать транскрибируемую цепь ДНК.
Однако это правило работает только в тех случаях, когда в условии задания обозначено, какая цепь является транскрибируемой, а какая – смысловой.
- Все виды РНК синтезируются с транскрибируемой цепи ДНК
Любые виды РНК: информационная (иРНК), транспортная (тРНК), рибосомальная (рРНК) – синтезируются с транскрибируемой цепи ДНК.
Если в задании нужно синтезировать какую-либо РНК, то в качестве матрицы (основы) для ее синтеза берется транскрибируемая цепь ДНК.
- Последовательность аминокислот в полипептиде находится по нуклеотидной последовательности иРНК
Чтобы определить последовательность аминокислот во фрагменте полипептида, нужно использовать молекулу иРНК. Для этого мы используем знания нуклеотидной последовательности молекулы иРНК и таблицу генетического кода.
Таблица генетического кода будет в условии задания на экзамене, поэтому учить ее не требуется.
- Кодоны иРНК в таблице генетического кода указаны в направлении от 5’-конца к 3’-концу
При работе с таблицей генетического кода необходимо учитывать, что в ней указаны кодоны иРНК в направлении от 5’-конца к 3’-концу. Соответственно, использовать другие триплеты в другом направлении при работе с этой таблицей нельзя.
Основные принципы
Для решения 27 задания нужно знать еще и два принципа построения цепи ДНК: комплементарности и антипараллельности.
- Принцип комплементарности
Принцип комплементарности – это избирательное соединение нуклеотидов при образовании новых молекул нуклеиновых кислот.
В процессе репликации (самоудвоения молекулы ДНК) синтез дочерних цепей идет на основе материнской цепи ДНК. При построении новых цепей ДНК нуклеотиды дочерней цепи подбираются не спонтанно, а избирательно: в строгом соответствии с последовательностью нуклеотидов в материнской цепи ДНК.
Проще: Если в исходной цепи встречается определенный нуклеотид, то в дочерней цепи ему будет соответствовать другой определенный нуклеотид.
Комплементарны друг другу следующие нуклеотиды:
- адениловый нуклеотид – тимидиловый нуклеотид (А-Т);
- гуаниловый нуклеотид – цитидиловый нуклеотид (Г-Ц).
Принцип комплементарности используется не только при построении дочерних цепей ДНК, но и при построении любых новых молекул нуклеиновых кислот. Ниже приводится схема соответствия друг другу нуклеотидов разных молекул нуклеиновых кислот.
- Принцип антипараллельности
Принцип антипараллельности: цепи в молекуле ДНК ориентированы антипараллельно. Одна строится в направлении 5՛-3՛, другая – в 3՛-5՛.
Выше мы уже обсуждали, что молекула ДНК состоит из двух цепей, каждая из которых имеет свой направление синтеза. Важно запомнить, что транскрибируемая цепь строится в направлении от 3’-конца к 5’-концу, а смысловая – от 5’-конца к 3’-концу. Направление синтеза разное, поэтому говорят, что цепи антипараллельны.
При синтезе дочерней цепи ДНК на основе материнской важно помнить не только про избирательное соединение нуклеотидов, но и про антипараллельность цепей. Если у нас есть одна цепь ДНК с определенной последовательностью нуклеотидов, то при синтезе с ее новой цепи ДНК нужно воспользоваться принципом комплементарности. А также правильно указать направления цепей в соответствии с принципом антипараллельности. Например, если исходная цепь имела направление 3՛-5՛, то дочерняя цепь будет иметь направление 5՛-3՛.
Обратите внимание: в данном случае цепи не нужно переориентировать или «отзеркаливать». Необходимо указать направление дочерней цепи антипараллельно исходной.
Принцип антипараллельности также используется при построении любых новых молекул нуклеиновых кислот.
С основными правилами и принципами, которые нужно знать для решения задания №27, мы познакомились. Они помогут вам научиться решать простейшие задачи на биосинтез белка. Однако на реальном экзамене в задании №27 бывает много подвохов, о которых мы поговорим в следующий раз. До встречи!
Решаем простейшие задачи на биосинтез белка
Решаем простейшие задачи на биосинтез белка
Решаем простейшие задачи на биосинтез белка
В прошлый раз мы обсуждали основные правила и принципы решения задач на биосинтез белка. Их важно использовать при работе с заданием №27 в КИМе. Сегодня мы продолжим разбирать задачи на биосинтез белка, рассмотрим простейшие задания и обсудим алгоритмы их решения. Поехали!
Пример №1
Фрагмент начала гена имеет следующую последовательность нуклеотидов (нижняя цепь матричная (транскрибируемая)):
5’ – ЦАГАГАГЦАГААТАЦ – 3ʹ
3ʹ – ГТЦТЦТЦГТЦТТАТГ – 5ʹ
Определите последовательность аминокислот во фрагменте полипептидной цепи, объясните последовательность решения задачи.
Внимательно прочитаем условие и определим, что нам дано и что требуется найти. В задании речь идет о фрагменте гена, то есть перед нами участок молекулы ДНК. По условию требуется определить последовательность аминокислот во фрагменте полипептидной цепи и объяснить ход решения.
Для того, чтобы определить последовательность аминокислот во фрагменте полипептидной цепи, мы должны знать последовательность нуклеотидов в цепи иРНК. Саму молекулу иРНК легко построить, используя транскрибируемую цепь ДНК.
Итак, задача будет решаться в два шага:
- По принципу комплементарности на основе транскрибируемой цепи ДНК построим молекулу иРНК;
- Определим последовательность аминокислот во фрагменте полипептида с помощью нуклеотидной последовательности молекулы иРНК и таблицы генетического кода.
Решение:
- в качестве матрицы (основы) для синтеза иРНК берем транскрибируемую ДНК и далее по принципу комплементарности (А–У, Т–А, Г–Ц, Ц–Г) строим новую молекулу:
транскрибируемая ДНК: 3ʹ – ГТЦТЦТЦГТЦТТАТГ – 5ʹ
иРНК: 5’ – ЦАГАГАГЦАГААЦАЦ – 3’
Обратите внимание: направление цепи иРНК мы изменили в соответствии с принципом антипараллельности.
- чтобы определить последовательность аминокислот в полипептиде, воспользуемся таблицей генетического кода и полученной молекулой иРНК. Для этого разбиваем молекулу иРНК на отдельные триплеты, для которых будем искать в таблице генетического кода соответствующие аминокислоты.
иРНК: 5’ – ЦАГ АГА ГЦА ГАА ЦАЦ – 3’
полипептид: глн–арг–ала–глу–гис
Обратите внимание: между названиями аминокислот стоят дефисы. Их обязательно нужно писать, так как между аминокислотами в полипептиде имеются пептидные связи. Чтобы их обозначить, пишут дефисы.
Все! На этом наша задача решена. Теперь обсудим, как писать решение на экзамене. В бланк ответов обычно сразу пишется решение, без «дано» и «ответа». Достаточно последовательно описать ход своих действий и ответить на все вопросы в задании.
У нашей задачи решение, которое нужно будет вписать в бланк ответов, будет выглядеть следующим образом:
Решение:
- по принципу комплементарности на основе транскрибируемой цепи ДНК находим нуклеотидную последовательность молекулы иРНК:
5’ – ЦАГАГАГЦАГААЦАЦ – 3’; - на основе нуклеотидной последовательности молекулы иРНК и таблицы генетического кода определяем последовательность аминокислот во фрагменте полипептида: глн—арг—ала—глу—гис.
Пример №2
Исходный фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
5’ – ГЦГГГЦТАТТГЦЦТГ – 3’
3’ – ЦГЦЦЦГАТААЦГГАЦ – 5’
В результате мутации в ДНК четвёртая аминокислота во фрагменте полипептида заменилась на аминокислоту три. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК в результате мутации? Ответ поясните.
Эта задача чуть сложнее, чем предыдущая, но гораздо интереснее! Сначала, по традиции, внимательно прочитаем условие и определим, что дано и что требуется найти. Речь идет о молекуле ДНК до и после мутации. До мутации четвертый триплет ДНК кодировал одну аминокислоту, после мутации стал кодировать другую (по условию, аминокислоту три). Нужно определить, какую аминокислоту кодировал четвертый триплет ДНК до мутации, а также указать, какие изменения произошли в структуре ДНК, чтобы она стала кодировать другую аминокислоту.
Как определить, какую аминокислоту кодировал триплет ДНК до мутации? Так же, как и в предыдущей задаче. Сначала по принципу комплементарности находим кодон иРНК, который соответствует этому триплету ДНК. А затем воспользуемся таблицей генетического кода и определим аминокислоту, которая подходит этому кодону иРНК.
Решение:
- в качестве матрицы (основы) для синтеза иРНК берем транскрибируемую ДНК и далее по принципу комплементарности (А–У, Т–А, Г–Ц, Ц–Г) определим нуклеотидную последовательность кодона иРНК:
триплет транскрибируемой ДНК: 3ʹ – АЦГ – 5ʹ
кодон иРНК: 5’ – УГЦ – 3’
Обратите внимание: направление кодона иРНК мы изменили в соответствии с принципом антипараллельности.
- чтобы определить аминокислоту, которую кодирует этот кодон иРНК, воспользуемся таблицей генетического кода:
кодон иРНК: 5’ – УГЦ – 3’
аминокислота: цис.
Итак, триплет ДНК до мутации кодировал аминокислоту цис. После мутации этот же триплет стал кодировать аминокислоту три. Почему? Потому что в результате мутации изменилась нуклеотидная последовательность этого триплета. Если изменился триплет, то изменится и аминокислота, которую он кодирует.
Как узнать, какие изменения произошли в нуклеотидной последовательности триплета ДНК? Очевидно, начать «с конца».
Мы знаем, какую аминокислоту кодирует изменившийся триплет. Значит, можно определить, какой кодон иРНК соответствует этой аминокислоте (для этого надо посмотреть в таблицу генетического кода). Так мы можем найти триплет ДНК по принципу комплементарности. Таким образом, мы получим триплет ДНК после мутации. Далее нужно сравнить триплет до и после мутации, а также сделать вывод о произошедших изменениях.
Решение:
- чтобы определить, какой кодон иРНК кодирует аминокислоту три, воспользуемся таблицей генетического кода:
аминокислота: три
кодон иРНК: 5’ – УГГ – 3’
Обратите внимание: в данном случае аминокислота встречается в таблице всего лишь один раз, поэтому мы выписали только один кодон иРНК. Однако бывают задачи, когда аминокислота встречается в таблице несколько раз. В таком случае кодонов также будет несколько.
- по принципу комплементарности на основе нуклеотидной последовательности кодона иРНК определим нуклеотидную последовательность триплета ДНК:
кодон иРНК: 5’ – УГГ – 3’
триплет транскрибируемой ДНК: 3’ – АЦЦ – 5’
Итак, после мутации триплет ДНК имеет следующую последовательность нуклеотидов: 3’ – АЦЦ – 5’. До мутации он имел другую последовательность нуклеотидов: 3ʹ – АЦГ – 5ʹ. Какие изменения произошли в ДНК в результате мутации? Как можно заметить, произошла замена последнего нуклеотида.
Теперь оформим решение как на экзамене.
Решение:
- четвёртый триплет исходного фрагмента транскрибируемой ДНК: 3ʹ – АЦГ – 5ʹ, по принципу комплементарности определяем кодон иРНК: 5’ – УГЦ – 3’;
- используя таблицу генетического кода, определяем, что кодон иРНК кодирует аминокислоту цис;
- во фрагменте транскрибируемой цепи ДНК в четвёртом триплете 3ʹ – АЦГ – 5ʹ произошла замена последнего нуклеотида (нуклеотид Г заменился на Ц).
Как можно заметить, задачи на биосинтез белка не такие сложные, как кажется на первый взгляд. Главное – внимательно читать условие, решать последовательно и соблюдать все правила оформления. Кстати, именно о них мы поговорим подробнее в следующий раз. До встречи!
Как оформлять задачи на биосинтез белка на ЕГЭ?
Как оформлять задачи на биосинтез белка на ЕГЭ?
В прошлый раз мы с вами обсуждали, как решать простейшие задачи на биосинтез белка. Сегодня нас ждет важный разговор о том, как оформлять 27 задание на ЕГЭ. Настоятельно советую не пренебрегать правилами, которые мы обсудим в этот раз, ведь от них зависит, сколько баллов за задание выставит эксперт на экзамене. Итак, поехали!
Главное
В отличие от других заданий второй части задачи на биосинтез белка имеют четкую структуру и оцениваются максимально только при наличии всех элементов ответа, которые предусмотрены составителями.
В бланке ответов обязательно должен быть представлен ход решения задачи. Иными словами, важно решать задачу последовательно, объяснять порядок своих действий, пояснять каждый шаг.
Правила оформления
- В молекулах ДНК, иРНК, сплошной цепи тРНК нуклеотиды можно писать через тире, триплеты можно писать через тире; молекулы можно записать в виде сплошной последовательности
Допустимыми с позиции оформления являются следующие варианты записи:
3’ -А-Г-А-Г-Ц-А-Г-Т-А-Г-Т-Т-Т-Г-А-Г-Ц-Ц- 5’
3’ — АГА-ГЦА-ГТА-ГТТ-ТГА-ГЦЦ — 5’
3’ — АГАГЦАГТАГТТТГАГЦЦ — 5’
При написании нуклеотидной последовательности цепей ДНК, иРНК, сплошной цепи тРНК можно записать нуклеотиды через тире, триплеты через тире. Почему? Между нуклеотидами имеются фосфодиэфирные связи, за счет которых нуклеотиды связываются друг с другом – тире обозначает эти связи. Также допустимо писать нуклеотиды без тире в виде сплошной последовательности.
- В сплошной цепи ДНК, иРНК, тРНК триплеты нельзя разделять запятыми
Недопустимой с позиции оформления является следующая запись:
3’ — АГА, ГЦА, ГТА, ГТТ, ТГА, ГЦЦ — 5’
Запятые в таком случае будут означать, что триплеты относятся к разным молекулам, в то время как триплеты составляют одну. Поэтому в сплошных цепях ДНК, иРНК, тРНК нельзя разделять триплеты запятыми.
- Антикодоны разных молекул тРНК нельзя писать через тире между триплетами
Недопустимой с позиции оформления является следующая запись:
3’ — АГА-ГЦА-ГАА-ГАА-АГА-ГЦЦ — 5’
Написание тире между триплетами при записи антикодонов тРНК является ошибкой. Это связано с тем, что антикодоны тРНК не связаны в единую цепь, они являются частями разных молекул.
- Аминокислоты во фрагменте полипептида можно писать через тире, пробел, или без разделительных знаков
Допустимыми с позиции оформления являются следующие варианты записи:
Мет-Ала-Глу-Три-Сер-Арг
Мет Ала Глу Три Сер Арг
МетАлаГлуТриСерАрг
Написание тире между аминокислотами допустимо, так как при образовании полипептида аминокислоты связываются друг с другом пептидными связями. Тире обозначают эти связи.
- Аминокислоты во фрагменте полипептида нельзя писать через запятую или точку с запятой
Недопустимой с позиции оформления является следующая запись:
Мет, Ала, Глу, Три, Сер, Арг
Мет; Ала; Глу; Три; Сер; Арг
- Писать в ответе нуклеотид или кодон молекулы иРНК в качестве гена нельзя
Ген – это участок молекулы ДНК. Соответственно, указание в ответе нуклеотида или кодона в молекуле иРНК как гена считается ошибкой.
- В задачах с открытой рамкой считывания на иРНК необходимо в явном виде указывать место начала или окончания синтеза полипептида
Допустимыми с позиции оформления являются следующие варианты записи:
3’ — АУГАГЦАГУАГУУЦААЦГАГЦЦ — 5’
3’ — АУГАГЦАГУАГУУЦААЦГАУАА — 5’
В 2022 году на ЕГЭ появился новый тип задач на биосинтез белка. В таких заданиях нужно самостоятельно определить открытую рамку считывания (участок иРНК, кодирующий полипептид) и указать место начала или окончания синтеза полипептида на молекуле иРНК. Вы можете подчеркнуть или обвести кодон, указать стрелкой на первый или последний нуклеотид рамки считывания.
- При написании цепей ДНК, иРНК, тРНК, антикодонов тРНК нужно указывать направления цепей
При написании последовательностей нуклеиновых кислот важно не только верно написать саму последовательность, но и указать направление цепи, то есть обозначить 3’- и 5’-концы. Если концы цепей будут указаны неверно, баллы за решение будут снижены.
Требований к оформлению 27 задания достаточно много. Не забывайте их учитывать при написании решения в бланк ответов. В случае, если участник экзамена неверно оформляет решение, баллы будут снижаться так же, как и в случае наличия в ответе биологических ошибок. Чтобы этого не произошло, не забывайте проверять свой ответ перед внесением его в бланк. Успехов!
Каждая клетка содержит тысячи белков. Свойства белков зависят от их первичной структуры, т. е. порядка соединения аминокислотных остатков в молекулах.
Информация о первичной структуре всех белков организма закодирована последовательностью нуклеотидов, образующих молекулы ДНК. В молекулах ДНК выделяют гены. Каждый ген соответствует одному белку.
Ген — это единица наследственности, представляющая собой участок ДНК, в котором закодирована первичная структура молекул одного белка.
В одной молекуле ДНК содержится много генов. Все гены данного организма образуют его генотип.
Процесс биосинтеза белка состоит из двух этапов: транскрипции и трансляции.
Рис. (1). Этапы биосинтеза белка
Для каждого этапа биосинтеза требуются особые ферменты и АТФ.
Биосинтез происходит в клетках с огромной скоростью. В организме высших животных в одну минуту образуется до (60) тыс. пептидных связей.
Транскрипция
Транскрипция — это процесс переписывания наследственной информации с молекулы ДНК на информационную (матричную) РНК.
В ходе транскрипции участок двуцепочечной ДНК «разматывается». На одной из цепочек синтезируется молекула иРНК.
Рис. (2). Транскрипция
Информационная (матричная) РНК одноцепочечная, она собирается на одной из нитей ДНК по правилу комплементарности.
Рис. (3). Комплементарность ДНК и РНК
Образуется молекула иРНК, которая является копией второй цепочки ДНК, только в ней тимин заменён на урацил. Закодированная в ДНК информация о первичной структуре белка таким образом переписывается на иРНК.
Как и в любой другой биохимической реакции, в этом процессе участвует фермент — РНК-полимераза.
Молекула ДНК содержит большое количество генов. Каждый ген начинается промотором — особым участком ДНК, состоящим из нескольких расположенных друг за другом нуклеотидов, который определяет РНК-полимераза, и с этого места начинает сборку молекулы иРНК.
Синтез иРНК продолжается до терминатора — последовательности, указывающей на завершение сборки иРНК.
В клетках прокариот иРНК образуется в цитоплазме, поэтому образовавшиеся молекулы могут сразу принимать участие в синтезе белков на рибосомах.
В клетках эукариот транскрипция происходит в ядре, поэтому иРНК сначала через поры в ядерной мембране выходит в цитоплазму.
Трансляция
Трансляция — это перевод информации, закодированной в иРНК, в первичную структуру молекулы белка.
Для сборки белковой молекулы в цитоплазме клетки должны присутствовать все необходимые аминокислоты. Они образуются при расщеплении белков, поступающих с пищей, или синтезируются в самом организме.
Аминокислоты доставляются к рибосомам транспортными РНК (тРНК). Аминокислота попадает в рибосому только в комплексе с сответствующей тРНК.
На тот конец иРНК, с которого нужно начать синтез белка, нанизывается рибосома. Она движется вдоль иРНК прерывисто, «скачками», задерживаясь на каждом кодоне приблизительно (0,2) секунды.
К кодону, расположенному в активном центре рибосомы, присоединяется тРНК с комплементарным антикодоном. Соединённая с ней аминокислота образует пептидную связь к растущей полипептидной цепочкой. Затем рибосома перемещается на следующий кодон иРНК. В рибосоме оказывается тРНК с антикодоном, комплементарным следующему триплету в иРНК, и к образующейся молекуле белка присоединяется следующая аминокислота.
Рис. (4). Трансляция
Рибосома постепенно сдвигается по иРНК, задерживаясь на следующих триплетах. Так поэтапно собирается молекула белка.
Синтез полипептидной цепи заканчивается, когда в активном центре рибосомы оказывается стоп-кодон (УАА, УАГ или УГА). Молекула белка отсоединяется от рибосомы, выходит в ЭПС или цитоплазму и усложняется, образуя характерную вторичную, третичную и четвертичную структуры.
На одной иРНК одновременно находятся несколько рибосом и происходит синтез нескольких молекул белка. Рибосомы, которые связаны с одной иРНК и синтезируют один и тот же белок, образуют полисому.
Когда синтез данного белка окончен, рибосома может найти другую иРНК и начать синтезировать другой белок.
Общая схема синтеза белка представлена на рисунке.
Рис. (5). Общая схема биосинтеза белка
Пример:
последовательность нуклеотидов матричной цепи ДНК: ААГ ГЦТ ТАГ.
При транскрипции на этой цепи по принципу комплементарности образуется участок иРНК с нуклеотидами УУЦ ЦГА АУЦ, на котором в результате трансляции образуется цепочка из аминокислот: фенилаланин — аргинин — серин.
Если в одном из триплетов произойдёт замена нуклеотидов или они поменяются местами, то может случиться так, что триплет станет кодировать какую-нибудь другую аминокислоту. Значит, произойдут изменения и в строении белка, закодированного данным геном, что может оказать влияние на процессы обмена веществ и изменить признаки организма.
Обрати внимание!
Нарушения последовательности нуклеотидов в ДНК или иРНК могут приводить к возникновению мутаций.
Источники:
Рис. 1. Этапы биосинтеза белка. https://image.shutterstock.com/image-vector/dna-replication-protein-synthesis-transcription-600w-1040732464.jpg
Рис. 2. Транскрипция. https://image.shutterstock.com/image-illustration/double-stranded-dna-copied-into-600w-757534681.jpg
Рис. 3. Комплементарность ДНК и РНК. © ЯКласс
Рис. 4. Трансляция. https://image.shutterstock.com/image-vector/scheme-translation-process-syntesis-mrna-600w-1314724547.jpg
Рис. 5. Общая схема биосинтеза белка. https://image.shutterstock.com/image-vector/protein-synthesis-vector-illustration-labeled-600w-1205986015.jpg
«Биология отрицает законы математики: при делении происходит умножение» Валерий Красовский
Шаблоны Joomla 3 тут
Биосинтез белка
Биосинтез белка является одной из традиционно трудных тем. Эта тема встречается как в первой части ЕГЭ, так и во второй, где 27 задания включают задачи на биосинтез белка. С 2020 года задания линии 27, связанные с биосинтезом белка, учитывают принцип антипараллельности, который обычно не рассматривается подробно в школах.
Мы предлагаем вам подробный видео урок, посвященный биосинтезу белка. Вы вспомните основные принципы строения белка, молекулы ДНК, а также узнаете этапы биосинтеза (транскрипция, трансляция), основные постранскрипционные процессы (процессинг, сплайсинг, альтернативный сплайсинг).
Все процессы раскрыты с учетом антипараллельности, что необходимо учитывать в 27 заданиях в ЕГЭ 2020! Анимационные вставки помогут лучше понять все тонкости биосинтеза белка.
Стоимость просмотра видео урока «Биосинтез белка» — 200 руб. (по всем техническим вопросам обращайтесь — Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.)
Смотри также:
Как решать задачи линии 27 с учетом антипараллельности
Просмотров: 19515