На странице вы найдете все формулы тригонометрии в удобном для использования оформлении. Формулы структурированы в блоки по количеству аргументов, степеням, арифметическим операциям над ними.
Содержание:
- Основные тригонометрические тождества
- Формулы двойного угла
- Формулы тройного угла
- Формулы понижения степени
- Вторая степень
- Третья степень
- Четвертая степень
- Пятая степень
- Формулы половинного угла
- Формулы понижения степени половинного угла
- Формулы сложения аргументов
- Формулы вычитания аргументов
- Формулы суммы
- Формулы разности
- Формулы произведения
- Формулы произведения в степени
- Все формулы на одном листе
Все формулы тригонометрии
Основные тригонометрические тождества
tg alpha = dfrac {sin alpha}{ cos alpha} = dfrac{1}{ctg alpha}
ctg alpha = dfrac {cos alpha}{ sin alpha} = dfrac{1}{tg alpha}
sin ^2 alpha + cos ^2 alpha = 1
1+tg^2alpha=dfrac{1}{cos^2alpha}
1+ctg^2alpha=dfrac{1}{sin^2alpha}
tgalpha cdot ctgalpha=1
Формулы двойного угла (аргумента)
sin(2alpha)=2 cdot cos alpha cdot sin alpha
sin(2alpha)=dfrac{2 cdot tg alpha}{1+tg ^2 alpha}=dfrac{2 cdot ctg alpha}{1+ctg ^2 alpha}=dfrac{2}{tg alpha + ctg alpha}
cos(2alpha)=cos ^2 alpha- sin ^2 alpha = 2 cdot cos ^2 alpha- 1 = 1- 2 cdot sin ^2 alpha
cos(2alpha)=dfrac{1 -tg ^2 alpha}{1+tg ^2 alpha}=dfrac{ctg ^2 alpha- 1}{ctg ^2 alpha +1}=dfrac{ctg alpha-tg alpha}{ctg alpha + tg alpha}
tg(2alpha) = dfrac{2 cdot tg alpha}{1-tg ^2 alpha}=dfrac{2 cdot ctg alpha}{ctg ^2 alpha- 1}=dfrac{2}{ctg alpha- tg alpha}
ctg(2alpha) = dfrac{ctg ^2 alpha-1}{2 cdot ctg alpha}=dfrac{ctg alpha- tg alpha}{2}
Формулы тройного угла (аргумента)
sin(3alpha)=3 cdot sin alpha- 4 cdot sin ^3 alpha
cos(3alpha)= 4 cdot cos ^3 alpha- 3 cdot cos alpha
tg(3alpha)= dfrac{3 cdot tg alpha- tg ^3 alpha}{1-3 cdot tg ^2 alpha}
ctg(3alpha)= dfrac{ctg ^3 alpha- 3 cdot ctg alpha}{3 cdot ctg ^2 alpha -1}
Формулы понижения степени тригонометрических функций
Вторая степень
sin ^2 alpha = dfrac{1-cos(2alpha)}{2}
cos ^2 alpha = dfrac{1+cos(2alpha)}{2}
tg ^2 alpha = dfrac{1-cos(2alpha)}{1+cos(2alpha)}
ctg ^2 alpha = dfrac{1+cos(2alpha)}{1-cos(2alpha)}
(sin alpha- cos alpha)^2=1-sin(2 alpha)
(sin alpha+ cos alpha)^2=1+sin(2 alpha)
Третья степень
sin ^3 alpha = dfrac{3 cdot sin(alpha)-sin(3 alpha)}{4}
cos ^3 alpha = dfrac{3 cdot cos(alpha)+cos(3 alpha)}{4}
tg ^3 alpha = dfrac{3 cdot sin (alpha)-sin(3 alpha)}{3 cdot cos (alpha)+cos(3 alpha)}
ctg ^3 alpha = dfrac{3 cdot cos (alpha)+cos(3 alpha)}{3 cdot sin (alpha)-sin(3 alpha)}
Четвёртая степень
sin ^4 alpha = dfrac{3-4 cdot cos(2 alpha)+cos(4 alpha)}{8}
cos ^4 alpha = dfrac{3+4 cdot cos(2 alpha)+cos(4 alpha)}{8}
Пятая степень
sin ^5 alpha = dfrac{10 cdot sin(alpha)-5 cdot sin(3 alpha)+sin(5 alpha)}{16}
cos ^5 alpha = dfrac{10 cdot cos(alpha)+5 cdot cos(3 alpha)+cos(5 alpha)}{16}
Формулы половинного угла (аргумента)
sin Big( dfrac{alpha}{2} Big)=pm sqrt{dfrac{1-cos alpha}{2}}
cos Big( dfrac{alpha}{2} Big)=pm sqrt{dfrac{1+cos alpha}{2}}
tg Big( dfrac{alpha}{2} Big)= dfrac{1-cos alpha}{sin alpha}= dfrac{sin alpha}{1+cos alpha}
ctg Big( dfrac{alpha}{2} Big)= dfrac{1+cos alpha}{sin alpha}= dfrac{sin alpha}{1-cos alpha}
Формулы понижения степени половинного угла (аргумента)
sin ^2 Big( dfrac{alpha}{2} Big)=dfrac{1-cos alpha}{2}
cos ^2 Big( dfrac{alpha}{2} Big)=dfrac{1+cos alpha}{2}
tg ^2 Big( dfrac{alpha}{2} Big)=dfrac{1-cos alpha}{1+cos alpha}
ctg ^2 Big( dfrac{alpha}{2} Big)=dfrac{1+cos alpha}{1-cos alpha}
Формулы сложения аргументов
sin(alpha + beta)=sin alpha cdot cos beta + cos alpha cdot sin beta
cos(alpha + beta)=cos alpha cdot cos beta- sin alpha cdot sin beta
tg(alpha + beta)= dfrac{tg alpha + tg beta}{1-tg alpha cdot tg beta}
ctg(alpha + beta)= dfrac{ctg alpha cdot ctg beta-1}{ctg alpha + ctg beta}
Формулы вычитания аргументов
sin(alpha- beta)=sin alpha cdot cos beta- cos alpha cdot sin beta
cos(alpha- beta)=cos alpha cdot cos beta+ sin alpha cdot sin beta
tg(alpha- beta)= dfrac{tg alpha- tg beta}{1+tg alpha cdot tg beta}
ctg(alpha- beta)= dfrac{ctg alpha cdot ctg beta+1}{ctg beta — ctg alpha}
Формулы суммы тригонометрических функций
sin alpha+ sin beta=2 cdot sin big( dfrac{alpha + beta}{2} big) cdot cos big( dfrac{alpha- beta}{2} big)
cos alpha+ cos beta=2 cdot cos big( dfrac{alpha + beta}{2} big) cdot cos big( dfrac{alpha- beta}{2} big)
tg alpha + tg beta = dfrac{sin(alpha + beta)}{cos alpha cdot cos beta}
ctg alpha + ctg beta = dfrac{sin(alpha + beta)}{cos alpha cdot cos beta}
sin (alpha)+cos(alpha)=sqrt{2} cdot sin Big( alpha+ dfrac{pi}{4} Big)
Формулы разности тригонометрических функций
sin alpha- sin beta=2 cdot sin big( dfrac{alpha- beta}{2} big) cdot cos big( dfrac{alpha+ beta}{2} big)
cos alpha- cos beta=-2 cdot sin big( dfrac{alpha + beta}{2} big) cdot sin big( dfrac{alpha- beta}{2} big)
tg alpha- tg beta = dfrac{sin(alpha- beta)}{cos alpha cdot cos beta}
ctg alpha- ctg beta = dfrac{sin(alpha + beta)}{sin alpha cdot sin beta}
sin (alpha)-cos(alpha)=sqrt{2} cdot sin Big( alpha- dfrac{pi}{4} Big)
Формулы произведения тригонометрических функций
sin alpha cdot sin beta = dfrac{cos (alpha- beta)-cos(alpha + beta)}{2}
sin alpha cdot cos beta = dfrac{sin (alpha- beta)+sin(alpha + beta)}{2}
cos alpha cdot cos beta = dfrac{cos (alpha- beta)+cos(alpha + beta)}{2}
tg alpha cdot tg beta = dfrac{cos(alpha- beta)- cos(alpha+beta)}{cos(alpha- beta)+ cos(alpha+beta)}=dfrac{tg alpha + tg beta}{ctg alpha + ctg beta}
ctg alpha cdot ctg beta = dfrac{cos(alpha- beta)+ cos(alpha+beta)}{cos(alpha- beta)- cos(alpha+beta)}=dfrac{ctg alpha + ctg beta}{tg alpha + tg beta}
tg alpha cdot ctg beta = dfrac{sin(alpha- beta)+ sin(alpha+beta)}{sin(alpha+ beta)- sin(alpha-beta)}
Формулы произведения тригонометрических функций в степени
sin ^2 (alpha) cdot cos ^2 (alpha) = dfrac{1-cos(4 alpha)}{8}
sin ^3 (alpha) cdot cos ^3 (alpha) = dfrac{3 cdot sin(2 alpha)- sin(6 alpha)}{32}
sin ^4 (alpha) cdot cos ^4 (alpha) = dfrac{3-4 cdot cos(4 alpha)+ cos(8 alpha)}{128}
sin ^5 (alpha) cdot cos ^5 (alpha) = dfrac{10 cdot sin (2 alpha)-5 cdot sin(6 alpha)+sin (10 alpha)}{512}
Все формулы тригонометрии на одном листе
На этой картинке собраны все формулы тригонометрии для печати. Лист можно распечатать и использовать при решении задач ЕГЭ или вырезать таблицы и использовать как шпаргалку. Распечатанный лист можно применять как справочный материал при решении задач по тригонометрии в 10 и 11 классе.
Опубликовано 04.12.2014 — 11:35 — Лобышева Ирина Сергеевна
каждый год выпускаю классы и имею подборку тригонометрических формул используемых в обеих частях ЕГЭ, которыми хочу поделиться с Вами.
Скачать:
Вложение | Размер |
---|---|
1.28 МБ |
Предварительный просмотр:
По теме: методические разработки, презентации и конспекты
Разработка урока алгебры в 10 классе по теме «Формулы тригонометрии»
Данный урок является обобщающим по теме «Тригонометрические формулы»…
Формулы тригонометрии
Обобщающий урок по теме в 10 классе по учебнику А.Г. Мордкович…
Основные формулы по тригонометрии
Приведены основные формулы по тригонометрии для 10 класса….
Тригонометрия. Сборник формул
Тригонометрия. Сборник формул…
Основные формулы тригонометрии
Основные формулы тригонометрии, которые необходимы при подготовке к ЕГЭ по математике…
Формулы тригонометрии
В презентации содержится материал о различных формулах по тригонометрии. Содержание презентации можно использовать как…
Тригонометрия учебник с формулами
Учебник по тригонометрии включает теоретический материал с формулами…
- Мне нравится
Основные тригонометрические формулы
Пример. Найти значение выражения:
Решение. Применяем основное тригонометрическое тождество в виде:
Пример. Найти значение выражения:
Решение. Из основного тригонометрического тождества следует:
Подставим в выражение:
Тригонометрические формулы суммы и разности двух углов
Пример. Вычислить
Решение.
Пример. .
Решение.
Тригонометрические формулы двойного угла
Пример. Найдите 2cos2α, если sinα = — 0,7.
Решение. Используем формулу косинуса двойного угла: cos2α = 1 – 2sin²α.
Получаем: 2cos2α = 2·(1 – 2sin²α) = 2·(1-2·(-0,7)2) = 2·(1-2·0,49) = 0,04.
Пример. Найдите значение выражения
Решение. Применяем формулу sin2α = 2sinα·cosα:
Формулы понижения степени
Пример. Найти значение выражения $ 3sin^{2}4x $, если $ cos8x=0,5 $
Решение. Используем формулу понижения степени:
Применительно к углам 4x и 8x она будет выглядеть так:
Находим значение выражения:
Тригонометрические формулы произведения
Пример. Вычислить sin 20°·sin 40°, считать, что cos20° = 0,9
Решение. Заметим, что
Формулы суммы и разности тригонометрических функций
Формулы приведения
Формул приведения много, а точнее 32. И все формулы надо знать. К счастью существует простое мнемоническое правило, позволяющее быстро воспроизвести любую формулу приведения.
Каждая формула связывает между собой либо синус с косинусом, либо тангенс с котангенсом. Причём, первая функция либо меняется на вторую, либо нет.
1. В левой части формулы аргумент представляет собой сумму или разность одного из «основных координатных углов»: $ frac {pi}{2}, pi, frac {3pi}{2}, 2pi $ и острого угла $ alpha $, а в правой части аргумент $ alpha $
2. В правой части знак перед функцией либо «плюс», либо «минус».
Мнемоническое правило
Достаточно задать себе два вопроса:
1. Меняется ли функция на кофункцию?
Ответ: Если в формуле присутствуют углы $ frac {pi}{2} $ или $ frac {3pi}{2} $ — это углы вертикальной оси, киваем головой по вертикали и сами себе отвечаем: «Да», если же присутствуют углы горизонтальной оси π или 2π, то киваем головой по горизонтали и получаем ответ: «Нет».
2. Какой знак надо поставить в правой части формулы?
Ответ: Знак определяем по левой части. Смотрим, в какую четверть попадает угол, и вспоминаем, какой знак в этой четверти имеет функция, стоящая в левой части.
Например, sin $ ( frac {3 pi}{2} + alpha ) $.
1) «Меняется функция или нет?»
$ frac {3pi}{2} $ — угол вертикальной оси, киваем головой по вертикали: «Да, меняется». Значит, в правой части будет cosα.
2) «Знак?»
Угол $ ( frac {3 pi}{2} + alpha ) $ попадает в IV четверть. Синус в IV четверти имеет знак «минус». Значит, в правой части ставим знак «минус».
Итак, получили формулу, sin $ ( frac {3 pi}{2} + alpha ) = –cosα. $
Пример. Найдите значение выражения
Решение. Используем формулу приведения:
Пример. Найдите значение выражения 5tg17⁰ · tg107⁰.
Решение. Используем формулу приведения:
5tg17⁰ · tg107⁰ = 5tg17⁰·tg(90⁰ + 17⁰) = 5tg17⁰·(−ctg17⁰) = −5(tg17⁰·ctg17⁰) = −5·1 = −5.
Тригонометрический круг
Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое. Он заменяет десяток таблиц.
Сколько полезного на этом рисунке!
1. Перевод градусов в радианы и наоборот. Полный круг содержит 360 градусов, или 2π радиан.
2. Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси x, а значение синуса — на оси y.
3. И синус, и косинус принимают значения от –1 до 1.
Тригонометрический круг:
1. Значение тангенса угла α тоже легко найти — поделив sinα на cosα. А чтобы найти котангенс — наоборот, косинус делим на синус.
2. Знаки синуса, косинуса, тангенса и котангенса.
3. Синус — функция нечётная, косинус — чётная.
4. Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен 2π.
Графики тригонометрических функций
На рисунках приведены графики тригонометрических функций: y = sinx, y = cosx, y = tgx, y = ctgx.
1. График функции y = sinx
2. График функции y = cosx
3. График функции y = tgx
4. График функции y = ctgx
Для удобства сразу же приведем таблицу с всеми тригонометрическими тождествами. Всегда удобно открыть формулы в одном месте, выбрать нужную и решить пример. После таблицы мы по отдельности рассмотрим каждую тригонометрическую формулу: обсудим ее вывод и порешаем примеры.
- Основное тригонометрическое тождество:
$$sin(alpha)^2+cos(alpha)^2=1;$$ - Определение тангенса и котангенса через синус и косинус:
$$tg(alpha)=frac{sin(alpha)}{cos(alpha)};$$
$$ctg(alpha)=frac{cos(alpha)}{sin(alpha)};$$ - Cвязь тангенса и котангенса:
$$tg(alpha)=frac{1}{ctg(alpha)};$$
$$tg(alpha)*ctg(alpha)=1;$$ - Тангенс через косинус. Котангенс через синус:
$$tg(alpha)^2+1=frac{1}{cos(alpha)^2};$$
$$ctg(alpha)^2+1=frac{1}{sin(alpha)^2};$$ - Синус суммы и разности:
$$sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);$$
$$sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$ - Косинус суммы и разности:
$$cos(alpha+beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha);$$
$$cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$ - Тангенс суммы и разности:
$$tg(alpha+beta)=frac{tg(alpha)+tg(beta)}{1-tg(alpha)*tg(beta)};$$
$$tg(alpha-beta)=frac{tg(alpha)-tg(beta)}{1+tg(alpha)*tg(beta)};$$ - Котангенс суммы и разности:
$$сtg(alpha+beta)=frac{-1+сtg(alpha)*ctg(beta)}{ctg(alpha)+ctg(beta)};$$
$$сtg(alpha-beta)=frac{-1-сtg(alpha)*ctg(beta)}{ctg(alpha)-ctg(beta)};$$ - Двойной угол:
$$cos(2*alpha)=cos(alpha)^2-sin(alpha)^2=1-2*sin(alpha)^2=2*cos(alpha)^2-1;$$
$$sin(2*alpha)=2*sin(alpha)*cos(alpha);$$
$$tg(2*alpha)=frac{2*tg(alpha)}{1-tg(alpha)^2};$$
$$ctg(2*alpha)=frac{ctg(alpha)^2-1}{2*ctg(alpha)};$$ - Тройной угол:
$$cos(3*alpha)=cos(alpha)^3-3*sin(alpha)^2*cos(alpha)=-3*cos(alpha)+4*cos(alpha)^3;$$
$$sin(3*alpha)=3*sin(alpha)*cos(alpha)^2-sin(alpha)^3=3*sin(alpha)-4*sin(alpha)^3;$$
$$tg(3*alpha)=frac{3*tg(alpha)-tg(alpha)^3}{1-3*tg(alpha)^2};$$
$$ctg(3*alpha)=frac{ctg(alpha)^3-3*ctg(alpha)}{3*ctg(alpha)^2-1};$$ - Формулы половинного угла:
$$sin(frac{alpha}{2})^2=frac{1-cos(alpha)}{2};$$
$$cos(frac{alpha}{2})^2=frac{1+cos(alpha)}{2};$$
$$tg(frac{alpha}{2})^2=frac{1-cos(alpha)}{1+cos(alpha)};$$
$$ctg(frac{alpha}{2})^2=frac{1+cos(alpha)}{1-cos(alpha)};$$ - Понижение степени:
$$sin(alpha)^2=frac{1-cos(2*alpha)}{2};$$
$$cos(alpha)^2=frac{1+cos(2*alpha)}{2};$$
$$sin(alpha)^3=frac{3*sin(alpha)-sin(3*alpha)}{4};$$
$$cos(alpha)^3=frac{3*cos(alpha)+cos(3*alpha)}{4};$$
$$sin(alpha)^4=frac{3-4*cos(2*alpha)+cos(4*alpha)}{8};$$
$$cos(alpha)^4=frac{3+4*cos(2*alpha)+cos(4*alpha)}{8};$$ - Преобразование суммы и разности тригонометрических функций:
$$sin(alpha)+sin(beta)=2*sinleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
$$sin(alpha)-sin(beta)=2*sinleft(frac{alpha-beta}{2}right)*cosleft(frac{alpha+beta}{2}right);$$
$$cos(alpha)+cos(beta)=2*cosleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
$$cos(alpha)-cos(beta)=-2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{alpha-beta}{2}right);$$
$$cos(alpha)-cos(beta)=2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{beta-alpha}{2}right);$$
$$tg(alpha)+tg(beta)=frac{sin(alpha+beta)}{cos(alpha)*cos(beta)};$$
$$tg(alpha)-tg(beta)=frac{sin(alpha-beta)}{cos(alpha)*cos(beta)};$$
$$ctg(alpha)+ctg(beta)=frac{sin(alpha+beta)}{sin(alpha)*sin(beta)};$$
$$ctg(alpha)-ctg(beta)=frac{sin(beta-alpha)}{sin(alpha)*sin(beta)};$$ - Преобразование произведения тригонометрических функций:
$$sin(alpha)*sin(beta)=frac{1}{2}*left(cos(alpha-beta)-cos(alpha+beta)right);$$
$$cos(alpha)*cos(beta)=frac{1}{2}*left(cos(alpha-beta)+cos(alpha+beta)right);$$
$$sin(alpha)*cos(beta)=frac{1}{2}*left(sin(alpha-beta)+sin(alpha+beta)right);$$ - Формулы подстановки тангенса:
$$sin(alpha)=frac{2*tg(frac{alpha}{2})}{1+tg(frac{alpha}{2})^2};$$
$$cos(alpha)=frac{1-tg(frac{alpha}{2})^2}{1+tg(frac{alpha}{2})^2};$$
$$tg(alpha)=frac{2*tg(frac{alpha}{2})}{1-tg(frac{alpha}{2})^2};$$
$$ctg(alpha)=frac{1-tg(frac{alpha}{2})^2}{2*tg(frac{alpha}{2})};$$ - Формулы приведения можно найти в отдельной статье
Зачем нужны тригонометрические формулы?
Как видите, тригонометрических формул очень много. Тут еще и не все приведены. Но на ваше счастье, учить всю эту таблицу не нужно. Достаточно знать только основные: №1-6, 9. Остальные на ЕГЭ по профильной математике встречаются крайне редко, а если и попадутся, то, скорее всего, будут даны в справочных материалах.
Но для участия в олимпиадах или, если вы хотите поступать в сильный математический ВУЗ через вступительные экзамены, то вам может понадобиться вся таблица. По крайней мере, у вас точно должно быть представление о существовании таких формул, чтобы их вывести в случае необходимости. Да, большинство из них легко выводятся.
Тригонометрические формулы нужны, чтобы связать все тригонометрические функции между собой. Если вы знаете одну из функций, например, синус, то, используя эти формулы, можно легко найти оставшиеся три тригонометрические функции (косинус, тангенс и котангенс). Кроме этого тождества позволяют упростить выражение под тригонометрической функцией: например, выразить синус от двойного угла через комбинацию тригонометрических функций от одинарного угла, что бывает очень полезно при решении тригонометрических уравнений и неравенств.
Обсудим и порешаем примеры на все формулы из таблицы.
Основное тригонометрическое тождество
$$mathbf{sin(alpha)^2+cos(alpha)^2=1;}$$
Эту формулу можно считать главной и самой часто используемой в тригонометрии. Она выводится при помощи определения синуса и косинуса через прямоугольный треугольник и теоремы Пифагора. Не буду еще раз описывать вывод, с ним можно познакомиться в самой первой главе по тригонометрии.
При помощи основного тригонометрического тождества очень удобно искать значение синуса, если известен косинус и наоборот. Разберем пример:
Пример 1
Найдите (3sqrt{2}*sin(alpha)=?), если (cos(alpha)=frac{1}{3}) и (alphain(0;frac{pi}{2})). (ЕГЭ)
Чтобы найти значение выражения (3sqrt{2}*sin(alpha)) необходимо сначала найти значение синуса.
Формула, которая связывает и синус, и косинус — это основное тригонометрическое тождество:
$$sin(alpha)^2+cos(alpha)^2=1;$$
Просто подставим в нее известное значение косинуса
$$sin(alpha)^2+left(frac{1}{3}right)^2=1;$$
$$sin(alpha)^2+frac{1}{9}=1;$$
$$sin(alpha)^2=1-frac{1}{9};$$
$$sin(alpha)^2=frac{8}{9};$$
$$sin(alpha)=pmsqrt{frac{8}{9}}=pmfrac{2sqrt{2}}{3};$$
Обратите внимание на знак (pm), отрицательное значение синуса нас тоже устраивает, так как при подстановке и возведении в квадрат знак минус исчезает.
В задании указано, что это пример из ЕГЭ первой части, значит должен быть только один ответ. Какое же значение синуса нам выбрать: положительное или отрицательное?
В этом нам поможет дополнительное условие на (alphain(0;frac{pi}{2})), что соответсвует первой четверти на тригонометрической окружности. Раз (alpha) лежит в первой четверти, то синус должен быть положительный. Выбираем положительное значение синуса:
$$sin(alpha)=frac{2sqrt{2}}{3};$$
И подставим найденное значение в искомое выражение:
$$3sqrt{2}*sin(alpha)=3sqrt{2}*frac{2sqrt{2}}{3}=4.$$
Ответ: (4.)
Аналогично по основному тригонометрическому тождеству можно находить значение косинуса, если известен синус.
Основные тригонометрическое тождество это ключ к решению более половины всех тригонометрических уравнений.
Основные связи тригонометрических функций
А как найти тангенс или котангенс, если нам, например, известен косинус? Посмотрите на формулы №2, для того, чтобы найти тангенс, нужно знать и косинус, и синус:
$$mathbf{tg(alpha)=frac{sin(alpha)}{cos(alpha)};}$$
$$mathbf{ctg(alpha)=frac{cos(alpha)}{sin(alpha)};}$$
Но зная косинус, мы легко можем найти синус по основному тригонометрическому тождеству, а потом уже найти тангенс.
Пример 2
Найдите (tg(alpha)) и (ctg(alpha)), если (cos(alpha)=frac{sqrt{10}}{10}) и (alpha in (frac{3pi}{2};2pi)).
Сначала находим значение синуса:
$$sin(alpha)^2+cos(alpha)^2=1;$$
$$sin(alpha)^2+left(frac{sqrt{10}}{10}right)^2=1;$$
$$sin(alpha)^2+frac{1}{10}=1;$$
$$sin(alpha)^2=1-frac{1}{10};$$
$$sin(alpha)^2=frac{9}{10};$$
$$sin(alpha)=pmsqrt{frac{9}{10}}=pmfrac{3}{sqrt{10}};$$
Так как по условию задачи (alpha in (frac{3pi}{2};2pi)), что соответсвует четвертой четверти на тригонометрической окружности, то (sin(alpha)<0). Выбираем отрицательное значение:
$$sin(alpha)=-frac{3}{sqrt{10}};$$
Теперь нам известны значения и косинуса, и синуса, можем найти тангенс:
$$tg(alpha)=frac{sin(alpha)}{cos(alpha)}=frac{-frac{3}{sqrt{10}}}{frac{sqrt{10}}{10}}=-frac{3}{sqrt{10}}*frac{10}{sqrt{10}}=-3;$$
Котангенс можно найти аналогично по формуле:
$$ctg(alpha)=frac{cos(alpha)}{sin(alpha)};$$
Но поступим проще и воспользуемся тригонометрической формулой, связывающей тангенс с котангенсом:
$$mathbf{сtg(alpha)=frac{1}{tg(alpha)};}$$
$$сtg(alpha)=frac{1}{-3}=-frac{1}{3};$$
Ответ: (tg(alpha)=-3;) (ctg(alpha)=-frac{1}{3}.)
Как видите, чтобы найти тангенс или котангенс через косинус или синус, необходимо воспользоваться сразу двумя тригонометрическими формулами. Это не очень удобно, поэтому очень полезны тригонометрические формулы, связывающие тангенс с косинусом или котангенс с синусом напрямую:
$$mathbf{tg(alpha)^2+1=frac{1}{cos(alpha)^2};}$$
$$mathbf{ctg(alpha)^2+1=frac{1}{sin(alpha)^2};}$$
Вывод связи тангенса с косинусом и котангенса с синусом
Полезно знать, как они выводятся. Вывод, на самом деле, элементарный, с использованием основного тригонометрического тождества и определения тангенса через синус и косинус:
$$tg(alpha)^2+1=frac{1}{cos(alpha)^2};$$
$$left(frac{sin(alpha)}{cos(alpha)}right)^2+1=frac{1}{cos(alpha)^2};$$
Приводим левую часть к общему знаменателю:
$$frac{sin(alpha)^2}{cos(alpha)^2}+frac{cos(alpha)^2}{cos(alpha)^2}=frac{1}{cos(alpha)^2};$$
$$frac{sin(alpha)^2+cos(alpha)^2}{cos(alpha)^2}=frac{1}{cos(alpha)^2};$$
В числителе у нас получилось основное тригонометрическое тождество:
$$frac{1}{cos(alpha)^2}=frac{1}{cos(alpha)^2};$$
Получилось верное равенство — формула доказана. Аналогично доказывается формула для котангенса и синуса. (В качестве упражнения докажите ее сами).
Если решать пример №2 по этим формулам, то решение заметно сокращается:
$$tg(alpha)^2+1=frac{1}{left(frac{sqrt{10}}{10}right)^2};$$
$$tg(alpha)^2+1=10;$$
$$tg(alpha)^2=9;$$
$$tg(alpha)=pm3;$$
Так как (alpha in (frac{3pi}{2};2pi)), то тангенс будет отрицательным:
$$tg(alpha)=-3;$$
Формулы суммы и разности тригонометрических функций
- Синус суммы и разности:
$$mathbf{sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);}$$
$$mathbf{sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);}$$ - Косинус суммы и разности:
$$mathbf{cos(alpha+beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha);}$$
$$mathbf{cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);}$$ - Тангенс суммы и разности:
$$mathbf{tg(alpha+beta)=frac{tg(alpha)+tg(beta)}{1-tg(alpha)*tg(beta)};}$$
$$mathbf{tg(alpha-beta)=frac{tg(alpha)-tg(beta)}{1+tg(alpha)*tg(beta)};}$$ - Котангенс суммы и разности:
$$mathbf{сtg(alpha+beta)=frac{-1+сtg(alpha)*ctg(beta)}{ctg(alpha)+ctg(beta)};}$$
$$mathbf{сtg(alpha-beta)=frac{-1-сtg(alpha)*ctg(beta)}{ctg(alpha)-ctg(beta)};}$$
Формулы суммы разности тригонометрических функций попадаются в ЕГЭ по профильной математике в №12. В прошлые года эти формулы давались в справочные материалах и учить их было не обязательно. Тем не менее, я бы рекомендовал выучить хотя бы формулы суммы и разности для синуса и косинуса.
Это не очень удобно, но иногда формулы суммы разности используют для вывода формул приведения:
Пример 3
Упростить выражение (sin(frac{pi}{2}+alpha)).
Воспользуемся формулой синуса суммы:
$$sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);$$
$$sin(frac{pi}{2}+alpha)=sin(frac{pi}{2})*cos(alpha)+sin(alpha)*cos(frac{pi}{2})=$$
$$=1*cos(alpha)+sin(alpha)*0=cos(alpha);$$
Формулы суммы разности так же полезны, когда нужно посчитать значение тригонометрических функций некоторых нестандартных углов:
Пример 4
Найдите значение (sin(15^o)=?)
(15^o) нестандартный угол, вы его не найдете в тригонометрической таблице углов. Представим (15^o) в виде разности стандартных углов (15^o=45^o-30^o). И воспользуемся формулой синуса разности:
$$sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$
$$sin(15^o)=sin(45^o-30^o)=sin(45^o)*cos(30^o)-sin(30^o)*cos(45^o)=$$
$$=frac{sqrt{2}}{2}*frac{sqrt{3}}{2}-frac{1}{2}*frac{sqrt{2}}{2}=$$
$$=frac{sqrt{6}}{4}-frac{sqrt{2}}{4}=frac{sqrt{6}-sqrt{2}}{4};$$
Вот мы наши синус (15^o). Получилось такое иррациональное некрасивое выражение, так и оставляем.
Ответ: (sin(15^o)=frac{sqrt{6}-sqrt{2}}{4}.)
Пример 5
Найдите значение (cos(75^o)=?)
(75^o) можно представить в виде суммы стандартных углов (75^o=30^o+45^o). Здесь воспользуемся формулой косинуса суммы:
$$cos(alpha+beta)=cos(30^o)*cos(45^o)-sin(30^0)*sin(45^0)=$$
$$=frac{sqrt{3}}{2}*frac{sqrt{2}}{2}-frac{1}{2}*frac{sqrt{2}}{2}=$$
$$=frac{sqrt{6}}{4}-frac{sqrt{2}}{4}=frac{sqrt{6}-sqrt{2}}{4};$$
У нас получился опять отвратительный ответ, но внимательный читатель заметит, что ответ такой же, как в предыдущем примере, это значит, что (cos(75^o)=sin(15^o)). Такой же вывод можно было бы сделать исходя из формул приведения и знания тригонометрической окружности.
Ответ: (cos(75^o)=frac{sqrt{6}-sqrt{2}}{4}.)
Мы не будем выводить эти формулы — это не самое приятное занятие. Их проще выучить, а вывод вам вряд ли когда-либо пригодится. Но сами формулы суммы и разности служат основой для доказательства других тригонометрических формул.
Формулы двойного угла
$$cos(2*alpha)=cos(alpha)^2-sin(alpha)^2=1-2*sin(alpha)^2=2*cos(alpha)^2-1;$$
$$sin(2*alpha)=2*sin(alpha)*cos(alpha);$$
$$tg(2*alpha)=frac{2*tg(alpha)}{1-tg(alpha)^2};$$
$$ctg(2*alpha)=frac{ctg(alpha)^2-1}{2*ctg(alpha)};$$
Формулы двойного угла для синуса, косинуса, тангенса и котангенса дают возможность выразить двойной угол (2alpha) через (alpha). Формулы для синуса и косинуса очень часто встречаются на ЕГЭ. Их обязательно нужно знать. Все они легко выводятся из формул синуса и косинуса суммы (формулы №5 и №6) :
$$cos(2alpha)=cos(alpha+alpha)=cos(alpha)*cos(alpha)-sin(alpha)*sin(alpha)=cos(alpha)^2-sin(alpha)^2;$$
Воспользовавшись основным тригонометрическим тождеством можно преобразовать эту формулу:
$$cos(2alpha)=cos(alpha)^2-sin(alpha)^2=1-sin(alpha)^2-sin(alpha)^2=1-2sin(alpha)^2;$$
$$cos(2alpha)=cos(alpha)^2-sin(alpha)^2=cos(alpha)^2-(1-cos(alpha)^2)=2cos(alpha)^2-1;$$
Синус двойного угла выводится аналогичным образом только с использованием формулы синуса суммы:
$$sin(2alpha)=sin(alpha)*cos(alpha)+sin(alpha)*cos(alpha)=2sin(alpha)cos(alpha);$$
Для вывода формул двойного угла для тангенса нам понадобится представить тангенс в виде отношения синуса к косинуса по определению и только что выведенные формулы синуса и косинуса двойного угла:
$$tg(2alpha)=frac{sin(2alpha)}{cos(2alpha)}=frac{2sin(alpha)cos(alpha)}{cos(alpha)^2-sin(alpha)^2}=frac{frac{2sin(alpha)cos(alpha)}{cos(alpha)^2}}{frac{cos(alpha)^2-sin(alpha)^2}{cos(alpha)^2}}=frac{frac{2sin(alpha)}{cos(alpha)}}{1-frac{sin(alpha)^2}{cos(alpha)^2}}=frac{2tg(alpha)}{1-tg(alpha)^2};$$
Котангенс двойного угла выводится абсолютно также:
$$сtg(2alpha)=frac{cos(2alpha)}{sin(2alpha)}=frac{cos(alpha)^2-sin(alpha)^2}{2sin(alpha)cos(alpha)}=frac{frac{cos(alpha)^2-sin(alpha)^2}{sin(alpha)^2}}{frac{2sin(alpha)cos(alpha)}{sin(alpha)^2}}=frac{frac{cos(alpha)^2}{sin(alpha)^2}-1}{frac{2cos(alpha)}{sin(alpha)}}=frac{ctg(alpha)^2-1}{2ctg(alpha)};$$
В первой части на ЕГЭ попадаются номера на преобразование тригонометрических выражений, где часто содержится двойной угол:
Пример 6
Найти значение (24cos(2alpha)=?), если (sin(alpha)=-0,2.)
Воспользуемся формулой косинуса двойного угла:
$$cos(2alpha)=1-2sin(alpha)^2;$$
$$24cos(2alpha)=24(1-2sin(alpha)^2)=24-48sin(alpha)^2=24-48*(-0,2)^2=24-48*0,04=22,08.$$
Пример 7
Найти значение (frac{10sin(6alpha)}{3cos(3alpha)}=?), если (sin(3alpha)=0,6.)
Используем синус двойного угла, для этого представим (6alpha=2*(3alpha)):
$$sin(6alpha)=sin(2*(3alpha))=2sin(3alpha)cos(3alpha);$$
$$frac{10sin(6alpha)}{3cos(3alpha)}=frac{10*2sin(3alpha)cos(3alpha)}{3cos(3alpha)}=frac{20sin(3alpha)}{3}=frac{20*0,6}{3}=frac{12}{3}=4.$$
Пример 8
Найти значение выражения (frac{12sin(11^o)cos(11^o)}{sin(22^o)}=?)
Замечаем, что (22^o=2*11^o) и воспользуемся синусом двойного угла:
$$frac{12sin(11^o)cos(11^o)}{sin(22^o)}=frac{12sin(11^o)cos(11^o)}{2sin(11^o)cos(11^o)}=frac{12}{2}=6.$$
Формулы тройного угла
Формулы тройного угла обычно попадаются на математических олимпиадах или вступительных экзаменах в математические ВУЗы. Учить их необязательно, но знать о существовании полезно, тем более, что они достаточно легко выводятся.
$$cos(3*alpha)=cos(alpha)^3-3*sin(alpha)^2*cos(alpha)=-3*cos(alpha)+4*cos(alpha)^3;$$
$$sin(3*alpha)=3*sin(alpha)*cos(alpha)^2-sin(alpha)^3=3*sin(alpha)-4*sin(alpha)^3;$$
$$tg(3*alpha)=frac{3*tg(alpha)-tg(alpha)^3}{1-3*tg(alpha)^2};$$
$$ctg(3*alpha)=frac{ctg(alpha)^3-3*ctg(alpha)}{3*ctg(alpha)^2-1};$$
Выведем эти формулы, использую формулы сложения. Начнем с косинуса тройного угла:
$$cos(3*alpha)=cos(2alpha+alpha)=cos(2alpha)*cos(alpha)-sin(2alpha)*sin(alpha)=$$
$$=(cos(alpha)^2-sin(alpha)^2)*cos(alpha)-2sin(alpha)*cos(alpha)*sin(alpha)=$$
$$=cos(alpha)^3-sin(alpha)^2*cos(alpha)-2sin(alpha)^2*cos(alpha)=$$
$$=cos(alpha)^3-3sin(alpha)^2*cos(alpha);$$
Если расписать (sin(alpha)^2=1-cos(alpha)^2), то получим еще один вариант формулы тройного угла:
$$cos(3*alpha)=cos(alpha)^3-3sin(alpha)^2*cos(alpha)=cos(alpha)^3-3(1-cos(alpha)^2)*cos(alpha)=$$
$$=4cos(alpha)^3-3cos(alpha);$$
Аналогично выводится формула синуса тройного угла:
$$sin(3alpha)=sin(2alpha+alpha)=sin(2alpha)*cos(alpha)+sin(alpha)*cos(2alpha)=$$
$$=2sin(alpha)*cos(alpha)*cos(alpha)+sin(alpha)*(cos(alpha)^2-sin(alpha)^2)=$$
$$=2sin(alpha)*cos(alpha)^2+sin(alpha)*cos(alpha)^2-sin(alpha)^3=3sin(alpha)*cos(alpha)^2-sin(alpha)^3;$$
Распишем по основному тригонометрическому тождеству (cos(alpha)^2=1-sin(alpha)^2) и подставим:
$$sin(3alpha)=3sin(alpha)*cos(alpha)^2-sin(alpha)^3=$$
$$=3sin(alpha)*(1-sin(alpha)^2)-sin(alpha)^3=3sin(alpha)-4sin(alpha)^3;$$
Для тангенса и котангенса формулы тройного угла здесь выводить не будем, так как они достаточно редки. Но в качестве упражнения можете сами выполнить вывод, представив тангенс или котангенс по определению: через отношение синуса тройного угла к косинусу тройного угла или наоборот соотвественно.
Формулы тройного угла обычно используются при преобразовании сложных тригонометрических выражений. Например, на вступительных экзаменах в МФТИ любят давать тригонометрические уравнения на тройной угол и больше.
Формулы половинного угла (двойного аргумента)
$$sin(frac{alpha}{2})^2=frac{1-cos(alpha)}{2};$$
$$cos(frac{alpha}{2})^2=frac{1+cos(alpha)}{2};$$
$$tg(frac{alpha}{2})^2=frac{1-cos(alpha)}{1+cos(alpha)};$$
$$ctg(frac{alpha}{2})^2=frac{1+cos(alpha)}{1-cos(alpha)};$$
Формулы половинного угла это по сути формулы обратные формулам двойного угла. Достаточно запомнить их элементарный вывод, тогда учить совсем необязательно. Здесь важный момент, что любой угол (alpha) всегда можно представить в виде удвоенного угла (frac{alpha}{2}):
$$alpha=2*frac{alpha}{2};$$
Выведем формулу синуса половинного угла, для этого нам понадобится формула косинуса двойного угла:
$$cos(alpha)=1-2*sin(frac{alpha}{2})^2;$$
Выразим отсюда (sin(frac{alpha}{2})):
$$sin(frac{alpha}{2})^2=frac{1-cos(alpha)}{2};$$
Иногда эту формулу записывают без квадрата:
$$sin(frac{alpha}{2})=pmsqrt{frac{1-cos(alpha)}{2}};$$
Плюс минус возникает при избавлении от квадрата.
Вывод косинуса половинного угла тоже получается из формулы косинуса двойного угла:
$$cos(alpha)=2*cos(frac{alpha}{2})^2-1;$$
$$cos(frac{alpha}{2})^2=frac{cos(alpha)+1}{2};$$
$$cos(frac{alpha}{2})=pmsqrt{frac{cos(alpha)+1}{2}};$$
Доказательство формул половинного угла для тангенса и котангенса следует из выше доказанных формул:
$$tg(frac{alpha}{2})=frac{sin(frac{alpha}{2})}{cos(frac{alpha}{2})}=frac{pmsqrt{frac{1-cos(alpha)}{2}}}{pmsqrt{frac{cos(alpha)+1}{2}}}=sqrt{frac{frac{1-cos(alpha)}{2}}{frac{cos(alpha)+1}{2}}}=frac{1-cos(alpha)}{1+cos(alpha)};$$
Точно так же для котангенса:
$$сtg(frac{alpha}{2})=frac{cos(frac{alpha}{2})}{sin(frac{alpha}{2})}=frac{pmsqrt{frac{cos(alpha)+1}{2}}}{pmsqrt{frac{1-cos(alpha)}{2}}}=sqrt{frac{frac{cos(alpha)+1}{2}}{frac{1-cos(alpha)}{2}}}=frac{1+cos(alpha)}{1-cos(alpha)};$$
Пример 9
При помощи формул половинного угла можно, например, посчитать (cos(15^o)):
$$cos(frac{alpha}{2})^2=frac{1+cos(alpha)}{2};$$
$$cos(15^o)^2=frac{1+cos(30^o)}{2}=frac{1+frac{sqrt{3}}{2}}{2}=frac{2+sqrt{3}}{4};$$
$$cos(15^o)=sqrt{frac{2+sqrt{3}}{4}}.$$
Кстати, формулы половинного угла справедливы не только в явном виде, когда аргумент правой части формулы (alpha), а левой (frac{alpha}{2}). Но и в неявном, достаточно, чтобы аргумент правой части был больше аргумента левой в два раза:
$$sin(5alpha)=pmsqrt{frac{1-cos(10alpha)}{2}};$$
Формулы понижения степени
$$sin(alpha)^2=frac{1-cos(2*alpha)}{2};$$
$$cos(alpha)^2=frac{1+cos(2*alpha)}{2};$$
$$sin(alpha)^3=frac{3*sin(alpha)-sin(3*alpha)}{4};$$
$$cos(alpha)^3=frac{3*cos(alpha)+cos(3*alpha)}{4};$$
$$sin(alpha)^4=frac{3-4*cos(2*alpha)+cos(4*alpha)}{8};$$
$$cos(alpha)^4=frac{3+4*cos(2*alpha)+cos(4*alpha)}{8};$$
Формулы понижения второй степени на самом деле дублируют формулы половинного угла.
Формулы понижения третей степени перестановкой слагаемых дублируют формулы тройного угла.
Преобразование суммы и разности тригонометрических функций:
$$sin(alpha)+sin(beta)=2*sinleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
$$sin(alpha)-sin(beta)=2*sinleft(frac{alpha-beta}{2}right)*cosleft(frac{alpha+beta}{2}right);$$
$$cos(alpha)+cos(beta)=2*cosleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
$$cos(alpha)-cos(beta)=-2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{alpha-beta}{2}right);$$
$$cos(alpha)-cos(beta)=2*sinleft(frac{alpha+beta}{2}right)*sinleft(frac{beta-alpha}{2}right);$$
$$tg(alpha)+tg(beta)=frac{sin(alpha+beta)}{cos(alpha)*cos(beta)};$$
$$tg(alpha)-tg(beta)=frac{sin(alpha-beta)}{cos(alpha)*cos(beta)};$$
$$ctg(alpha)+ctg(beta)=frac{sin(alpha+beta)}{sin(alpha)*sin(beta)};$$
$$ctg(alpha)-ctg(beta)=frac{sin(beta-alpha)}{sin(alpha)*sin(beta)};$$
Формулы для суммы и разности тригонометрических функций полезны, если необходимо превратить сумму двух функций в произведение. Они в основном используются в уравнениях и преобразованиях сложных выражений, когда необходимо слагаемые разложить на множители.
Для вывода формул суммы и разности синусов и косинусов нам понадобится пара трюков и формулы синуса и косинуса суммы и разности (тут можно запутаться, в названиях формул, будьте внимательны). Вывод получается не самый очевидный.
Обратите внимание, что любой угол (alpha) можно представить в таком странном виде:
$$alpha=frac{alpha}{2}+frac{alpha}{2}+frac{beta}{2}-frac{beta}{2}=frac{alpha+beta}{2}+frac{alpha-beta}{2};$$
Аналогично угол (beta):
$$beta=frac{alpha+beta}{2}-frac{alpha-beta}{2};$$
Эти странности нам понадобятся при выводе формул, просто обратите на них внимание.
А теперь перейдем непосредственно к выводу формулы суммы синусов двух углов. Для начала распишем угла (alpha) и (beta) по формулам выше:
$$sin(alpha)+sin(beta)=sin(frac{alpha+beta}{2}+frac{alpha-beta}{2})+sin(frac{alpha+beta}{2}-frac{alpha-beta}{2}); qquad (*)$$
Теперь воспользуемся формулами синуса суммы и синуса разности:
$$sin(gamma+sigma)=sin(gamma)*cos(sigma)+sin(sigma)*cos(gamma);$$
$$sin(gamma-sigma)=sin(gamma)*cos(sigma)-sin(sigma)*cos(gamma);$$
Только у нас под синусами будут стоять не (gamma) и (sigma), а целые выражения.
Пусть:
$$gamma=frac{alpha+beta}{2};$$
$$sigma=frac{alpha-beta}{2};$$
Применим формулы синуса суммы и разности в (*):
$$sin(alpha)+sin(beta)=sin(frac{alpha+beta}{2}+frac{alpha-beta}{2})+sin(frac{alpha+beta}{2}-frac{alpha-beta}{2})=$$
$$=left(sin(frac{alpha+beta}{2})*cos(frac{alpha-beta}{2})+sin(frac{alpha-beta}{2})*cos(frac{alpha+beta}{2})right)+$$
$$+left(sin(frac{alpha+beta}{2})*cos(frac{alpha-beta}{2})-sin(frac{alpha-beta}{2})*cos(frac{alpha+beta}{2})right)=$$
$$=2*sin(frac{alpha+beta}{2})*cos(frac{alpha-beta}{2}); $$
В самом конце мы просто раскрыли большие скобки и привели подобные слагаемые.
Аналогично выводятся все остальные формулы.
Пример 10
Вычислить (sin(165)+sin(75)=?)
(165^o) и (75^o) это не табличные углы. Значения синусов этих углов мы не знаем. Для решения этого примера воспользуемся формулой суммы синусов:
$$sin(alpha)+sin(beta)=2*sinleft(frac{alpha+beta}{2}right)*cosleft(frac{alpha-beta}{2}right);$$
$$sin(165^o)+sin(75^o)=2*sinleft(frac{165^o+75^o}{2}right)*cosleft(frac{165^o-75^o}{2}right)=$$
$$=2*sin(120^o)*cos(45^o)=2*frac{sqrt{3}}{2}*frac{sqrt{2}}{2}=frac{sqrt{6}}{2}.$$
Преобразование произведения тригонометрических функций
$$sin(alpha)*sin(beta)=frac{1}{2}*left(cos(alpha-beta)-cos(alpha+beta)right);$$
$$cos(alpha)*cos(beta)=frac{1}{2}*left(cos(alpha-beta)+cos(alpha+beta)right);$$
$$sin(alpha)*cos(beta)=frac{1}{2}*left(sin(alpha-beta)+sin(alpha+beta)right);$$
В некотором смысле формулы произведения синуса, косинуса, тангенса и котангенса являются обратными к тригонометрическим формулам суммы и разности тригонометрических функций. При помощи этих формул возможно перейти от произведения к сумме или разности.
Для вывода нам опять понадобятся формулы косинуса суммы и разности:
$$cos(alpha+beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha);$$
$$cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
Сложим эти две формулы. Для этого складываем их левые части и приравниваем сумме правых частей:
$$cos(alpha+beta)+cos(alpha-beta)=cos(alpha)*cos(beta)-sin(beta)*sin(alpha)+cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
Приводим подобные слагаемые:
$$cos(alpha+beta)+cos(alpha-beta)=2*cos(alpha)*cos(beta);$$
Отсюда получаем:
$$cos(alpha)*cos(beta)=frac{1}{2}*(cos(alpha+beta)+cos(alpha-beta));$$
Формула произведения косинусов доказана.
Произведение синусов доказывается похожим образом. Для этого домножим формулу косинуса суммы слева и справа на ((-1)):
$$-cos(alpha+beta)=-cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
Косинус разности оставим без изменений:
$$cos(alpha-beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
Сложим опять эти две формулы:
$$cos(alpha-beta)-cos(alpha+beta)=cos(alpha)*cos(beta)+sin(beta)*sin(alpha)-cos(alpha)*cos(beta)+sin(beta)*sin(alpha);$$
$$cos(alpha-beta)-cos(alpha+beta)=2*sin(beta)*sin(alpha);$$
$$sin(beta)*sin(alpha)=frac{1}{2}*(cos(alpha-beta)-cos(alpha+beta));$$
Произведение синусов тоже доказано.
Для того, чтобы вывести формулу произведения синуса и косинуса, нам понадобятся формулы синуса суммы и разности:
$$sin(alpha+beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha);$$
$$sin(alpha-beta)=sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$
Сложим их:
$$sin(alpha+beta)+sin(alpha-beta)=sin(alpha)*cos(beta)+sin(beta)*cos(alpha)+sin(alpha)*cos(beta)-sin(beta)*cos(alpha);$$
$$sin(alpha+beta)+sin(alpha-beta)=2*sin(alpha)*cos(beta);$$
$$sin(alpha)*cos(beta)=frac{1}{2}*(sin(alpha+beta)+sin(alpha-beta));$$
Пример 11
Вычислить (sin(75^o)*cos(15^o)=?)
Воспользуемся формулой произведения синуса и косинуса:
$$sin(alpha)*cos(beta)=frac{1}{2}*(sin(alpha+beta)+sin(alpha-beta));$$
$$sin(75^o)*cos(15^o)=frac{1}{2}*(sin(75^o+15^o)+sin(75^o-15^o))=$$
$$=frac{1}{2}*(sin(90^o)+sin(60^o))=frac{1}{2}*(1+frac{sqrt{3}}{2})=frac{2+sqrt{3}}{4}.$$
Хотя, положа руку на сердце, я скажу тебе, что знание последней не так уж и обязательно (хотя желательно!), поскольку она легко выражается через тангенс.
Да и сам тангенс, по сути – тоже лишь тригонометрическое выражение, зависящее от синуса и косинуса.
Таким образом, у нас есть две основные тригонометрические функции – синус и косинус и две «второстепенные» – тангенс и котангенс.
Я не буду сейчас определять, что такое синус и косинус, ты и так это уже знаешь из предыдущих разделов. Я лишь скажу пару слов про важность этих понятий.
Итак, пара слов: первые зачатки тригонометрии возникли более 3 тысяч лет назад. Я думаю, что тебе очевидно, что тогда люди не занимались «формулами ради формул».
Так что тригонометрические функции имеют полезные практические свойства. Я не буду их перечислять. Если тебе интересно, ты всегда можешь найти море информации в интернете.
Если все, что я сказал выше, звучало для тебя древним эльфийским языком, то посмотри статью о тригонометрической окружности.
А сейчас я приведу тебе некоторые основные соотношения между тригонометрическими величинами, которые оказываются полезными при решении задач.
Уже получилось 7 формул! К сожалению, это еще далеко не предел. Совсем не предел.
Тем не менее последние 4 формулы есть ни что иное, как простое следствие первой. В самом деле, ты заметил, почему это так?
Формула 4 получается делением обеих частей формулы 1 на ( displaystyle co{{s}^{2}}alpha ) и применением формулы 2.
Формула 5 получается аналогично: разделим обе части формулы 1 на ( displaystyle si{{n}^{2}}alpha ) и вместо выражения ( displaystyle frac{co{{s}^{2}}alpha }{si{{n}^{2}}alpha }) запишем ( displaystyle ct{{g}^{2}}alpha ), исходя из определения 3.
Формулы 1 – 5 мы трактуем вполне однозначно. Чего нельзя сказать про формулы 6 и 7. В чем «фишка» формул 6 и 7?
Их особенность заключается в знаке ( displaystyle pm ), который стоит перед корнем.
Как это понимать? А понимать надо так: в некоторых случаях мы ставим плюс, а в некоторых – минус.
Теперь у тебя должен возникнуть вопрос: в каких-таких «некоторых случаях»? Туманность этой формулировки снимается следующим правилом:
Если в формуле
( displaystyle sin alpha =pm sqrt{1-co{{s}^{2}}alpha })
угол ( displaystyle alpha ) таков, что ( displaystyle text{sin} text{ }!!alpha!!text{ }<0), то ставим знак «минус», иначе – «плюс».
Если в формуле
( displaystyle cos alpha =pm sqrt{1-si{{n}^{2}}alpha })
угол ( displaystyle alpha ) таков, что ( displaystyle text{cos} text{ }!!alpha!!text{ }<0), то ставим знак «минус», иначе – «плюс».
Есть опять некий «запутанный» момент в правиле, не так ли? В чем осталось разобраться?
Осталось понять, как связан угол со знаком тригонометрической функции. Ответом на этот вопрос (если ты, конечно, забыл) служат следующие картинки:
Они подскажут тебе, какой нужно выбирать знак для той или иной функции, так что ты не допустишь досадной ошибки.
К тому же это избавит тебя от мучительных размышлений по поводу того «а зачем в этом примере нужен этот угол?!».
Решения:
1. Так как ( displaystyle cosalpha =pm sqrt{1-si{{n}^{2}}alpha }), то подставим сюда значение( displaystyle sinalpha =-frac{2sqrt{2}}{3}), тогда ( displaystyle cosalpha =pm sqrt{1-{{left( -frac{2sqrt{2}}{3} right)}^{2}}}=pm sqrt{1-frac{4cdot 2}{9}}=pm sqrt{1-frac{8}{9}}=)
( displaystyle=pm sqrt{frac{1}{9}}=pm frac{1}{3}.)
Теперь дело за малым: разобраться со знаком. Что нам для этого нужно? Знать, в какой четверти находится наш угол.
По условию задачи: ( displaystyle alpha in left( frac{3pi }{2};2pi right)). Смотри на картинку. Какая это четверть? Четвертая.
Каков знак косинуса в четвертой четверти? На картинке стоит знак «плюс», значит косинус в четвертой четверти положительный.
Тогда нам остается выбрать знак «плюс» перед ( displaystyle frac{1}{3}). ( displaystyle text{cos} text{ }!!alpha!!text{ }=frac{1}{3}), тогда ( displaystyle 3cosalpha =3cdot frac{1}{3}=1).
Ответ: ( displaystyle 1).
Ну вот видишь, ничего сложного. Абсолютно ничего. Нужно лишь запомнить знаки синуса, косинуса и тангенса (котангенса) по четвертям. Ну а как это делать автоматически описано в статье, посвященной тригонометрической окружности.
Давай разберем оставшиеся примеры.
2. Так как ( displaystyle sin alpha =pm sqrt{1-co{{s}^{2}}alpha }), то все, что нам нужно – это подставить ( displaystyle cosalpha =frac{2sqrt{6}}{5}) в нашу формулу. Что мы с тобой и сделаем:
( displaystyle sinalpha =pm sqrt{1-{{left( frac{2sqrt{6}}{5} right)}^{2}}}=pm sqrt{1-left( frac{4cdot 6}{25} right)}=pm sqrt{frac{1}{25}}=pm frac{1}{5}).
Опять нужно определиться со знаком. Смотрим на рисунок. Четверть – снова четвертая. Знак синуса четвертой четверти – отрицательный. Ставим знак «минус». ( displaystyle sinalpha =-frac{1}{5}), тогда ( displaystyle 5sinalpha =-5cdot frac{1}{5}=-1).
Ответ: ( displaystyle -1).
3. Ничего нового. Скорее для закрепления. Снова подставляем в формулу ( displaystyle cos alpha =pm sqrt{1-si{{n}^{2}}alpha }) значение ( displaystyle sinalpha =frac{2sqrt{6}}{5}):
( displaystyle cosalpha =pm sqrt{1-{{left( frac{2sqrt{6}}{5} right)}^{2}}}=pm sqrt{1-left( frac{4cdot 6}{25} right)}=pm sqrt{frac{1}{25}}=pm frac{1}{5}).
Смотрим на знак косинуса при ( displaystyle alpha in left( frac{pi }{2};pi right)). Какая это четверть? Вторая. Косинус второй четверти отрицательный. Тогда выбираем знак «минус».
Ответ: ( displaystyle -0,2).
4. Здесь перед нами стоит задачка чуть сложнее. Однако, не стоит огорчаться. Давай вспомним, что такое тангенс. Это ведь отношение синуса к косинусу. Синус нам уже дан.
Давай вначале найдем косинус. Как это сделать, ты уже знаешь. ( displaystyle cosalpha =pm sqrt{1-{{left( -frac{5}{sqrt{26}} right)}^{2}}}=pm sqrt{1-frac{25}{26}}=pm sqrt{frac{1}{26}}=pm frac{1}{sqrt{26}}).
Так как ( displaystyle alpha in left( pi ;frac{3pi }{2} right)) (это угол в третьей четверти, а косинус в третьей четверти имеет знак «минус»), то ( displaystyle cosalpha =-frac{1}{sqrt{26}}).
Теперь все, что нам осталось, это воспользоваться определением тангенса:
( displaystyle tgalpha =frac{sinalpha }{cosalpha }=frac{-frac{5}{sqrt{26}}}{-frac{1}{sqrt{26}}}=5.)
Ответ: ( displaystyle 5).
Уф, выдохнули! Ну вот мы с тобой решили некоторые (довольно типичные и распространенные) примеры. Ты спросишь: «И что, это все?». Я отвечу, что, увы нет. Это далеко не все.
Далее нам потребуются более сложные формулы тригонометрии.
Разбор 3 примеров
1. Доказать тождество: ( displaystyle frac{3-4cos2alpha +cos4alpha }{3+4cos2alpha +cos4alpha }=t{{g}^{4}}alpha )
С виду тождество угрожающе! Но разберёмся по порядку. Формулы понижения степени, конечно, если их прочитать задом наперёд повышают степень!
И вообще, приглядись внимательно: первые две формулы есть ничто иное, как косинус двойного угла, записанный в несколько странной форме!
Вот и распишем по правилам:
( displaystyle begin{array}{l}frac{3-4cos2alpha +cos4alpha }{3+4cos2alpha +cos4alpha }=frac{3-4cos2alpha +left( 2{cos^{2}}2alpha -1 right)}{3+4cos2alpha +left( 2{cos^{2}}2alpha -1 right)}=\=frac{2-4cos2alpha +2{cos^{2}}2alpha }{2+4cos2alpha +2{cos^{2}}2alpha }=frac{1-2cos2alpha +{cos^{2}}2alpha }{1+2cos2alpha +{cos^{2}}2alpha }end{array})
Тебе ничего по форме не напоминают числитель и знаменатель дроби? Приглядись внимательно, здесь «зарыта» хорошо известная тебе формула. Увидел её? Это же квадрат разности и квадрат суммы! (Подробнее об этом читай в статье о формулах сокращенного умножения)
( displaystyle frac{1-2cos2alpha +{cos^{2}}2alpha }{1+2cos2alpha +{cos^{2}}2alpha }=frac{{{left( 1-cos2alpha right)}^{2}}}{{{left( 1+cos2alpha right)}^{2}}}={{left( frac{1-cos2alpha }{1+cos2alpha } right)}^{2}})
А выражение в скобках есть ничто иное, как ( displaystyle t{{g}^{2}}alpha ), окончательно получим:
( displaystyle {{left( frac{1-cos2alpha }{1+cos2alpha } right)}^{2}}={{left( t{{g}^{2}}alpha right)}^{2}}=t{{g}^{4}}alpha )
Тождество доказано!
Следующий пример очень схож с предыдущим, постарайся решить его самостоятельно.
2. Доказать тождество: ( displaystyle frac{1+sin2alpha +cos2alpha }{1+sin2alpha -cos2alpha }=ctgalpha )
Решение (хотя может и отличаться от твоего):
Опять «повысим степень» у косинуса: ( displaystyle cos2alpha =2{cos^{2}}alpha -1)
( displaystyle frac{1+sin2alpha +cos2alpha }{1+sin2alpha -cos2alpha }=frac{1+sin2alpha +2{cos^{2}}alpha -1}{1+sin2alpha -2{cos^{2}}alpha +1}=frac{sin2alpha +2{cos^{2}}alpha }{2+sin2alpha -2{cos^{2}}alpha })
Надо сокращать дальше! Что делать? Ясно, что надо избавляться от двойных углов у синуса. Действуем по формуле синуса двойного угла и сокращаем двойки:
( displaystyle frac{sin2alpha +2{cos^{2}}alpha }{2+sin2alpha -2{cos^{2}}alpha }=frac{2sin{alpha} cos{alpha} +2{cos^{2}}alpha }{2+2sin{alpha} cos{alpha}-2{cos^{2}}alpha }=frac{sinalpha cosalpha +{cos^{2}}alpha }{1+sinalpha cos{alpha}-{cos^{2}}alpha })
Числитель раскладывается на множители. Знаменатель –пока нет. До тех пор, пока мы не применим основное тригонометрическое тождество:
( displaystyle 1-{cos^{2}}alpha ={sin^{2}}alpha )
( displaystyle frac{sinalpha cosalpha +{cos^{2}}alpha }{1+sinalpha cosalpha -{cos^{2}}alpha }=frac{sinalpha cosalpha +{cos^{2}}alpha }{{sin^{2}}alpha +sinalpha cosalpha }=frac{cosalpha left( sinalpha +cosalpha right)}{sinalpha left( sinalpha +cosalpha right)}=ctgalpha )
Вот ещё один пример, но не такой простой.
3. Доказать, что если ( displaystyle 0<alpha <frac{pi }{2}), то ( displaystyle sqrt{1+sinalpha }-sqrt{1-sinalpha }=2sinfrac{alpha }{2})
Зачем нам дан угол? Наверное, чтобы оценить выражения: синус ( displaystyle alpha )будет положительным, ( displaystyle sinfrac{alpha }{2}>0,~1+sinalpha >1,~0<1-sinalpha <1)
Тогда и левая, и правая части тождества больше нуля. Это даёт мне право без задней мысли возвести их в квадрат:
( displaystyle {{left( sqrt{1+sinalpha }-sqrt{1-sinalpha } right)}^{2}}=4{sin^{2}}frac{alpha }{2}) – вот такое тождество нам нужно теперь доказать.
Раскроем скобки в левой части по формуле квадрата разности!
( displaystyle begin{array}{l}{{left( sqrt{1+sin alpha }-sqrt{1-sin alpha } right)}^{2}}=1+sin alpha -2sqrt{1+sin alpha }cdot sqrt{1-sin alpha }+1-\-sin alpha =2-2sqrt{1+sin alpha }cdot sqrt{1-sin alpha }=2left( 1-sqrt{1+sin alpha }cdot sqrt{1-sin alpha } right)=\2left( 1-sqrt{1+{{sin }^{2}}alpha } right)=2left( 1-sqrt{{cos^{2}}}alpha right)end{array})
Я не сомневаюсь в твоей грамотности и поэтому даже не упоминаю про использованные мною формулы в выкладках.
Теперь надо бы убрать корень из косинуса. Но мы знаем, что просто так это делать нельзя, ибо ( displaystyle sqrt{{{a}^{2}}}=left| a right|).
В то же время вспоминаем про четверть: наш угол лежит в первой четверти, тогда косинус имеет знак «плюс» и мы просто убираем корень:
( displaystyle 2left( 1-sqrt{{cos^{2}}}alpha right)=2left( 1-cosalpha right))
Тогда нам надо доказать, что
( displaystyle 2left( 1-cosalpha right)=4{sin^{2}}frac{alpha }{2})
( displaystyle left( 1-cosalpha right)=2{sin^{2}}frac{alpha }{2})
Справа применим формулу понижения степени:
( displaystyle {sin^{2}}frac{alpha }{2}=frac{1-cosalpha }{2}), тогда ( displaystyle 2{sin^{2}}frac{alpha }{2}=1-cosalpha )
Тождество доказано!
Конечно, можно привести ещё массу примеров, где применяются формулы понижения степени, ты их и сам без труда отыщешь.
Теперь вторая (и заключительная в этом обзоре) группа формул – формулы преобразования произведения в сумму и суммы в произведение.
Решение 5 примеров
1. Доказать тождество: ( displaystyle frac{sinalpha +sin3alpha }{cosalpha +cos3alpha }=tg2alpha )
Давай не будем долго думать, а, как говорится, пойдём в лобовую атаку: в числителе и знаменателе перейдём от суммы к произведению:
( displaystyle begin{array}{l}~frac{sinalpha+sin3alpha}{cosalpha+cos3alpha}=frac{2sinfrac{alpha+3alpha}{2}cosfrac{alpha-3alpha}{2}}{2cosfrac{alpha+3alpha}{2}cosfrac{alpha-3alpha}{2}}=frac{2cdot sin2alphacdot cosleft( -alpha right)}{2cdot cos2alphacdot cosleft( -alpha right)}=\=frac{sin2alpha}{cos2alpha}=tg2alphaend{array})
И минуты не прошло, а пример уже решён!
Теперь попробуй сам.
2. Доказать тождество: ( displaystyle frac{sin2alpha +sin4alpha }{cos2alpha -cos4alpha }=ctgalpha )
Решение – опять лобовая атака:
( displaystyle begin{array}{l}frac{sin2alpha+sin4alpha}{cos2alpha-cos4alpha}=frac{2sinfrac{2alpha+4alpha}{2}cosfrac{2alpha-4alpha}{2}}{-2sinfrac{2alpha+4alpha}{2}sinfrac{2alpha-4alpha}{2}}=frac{2sin3alphacdot cosleft( -alpha right)}{-2sin3alphacdot sinleft( -alpha right)}=frac{cosleft( -alpha right)}{-sinleft( -alpha right)}end{array})
Так как синус – функция нечётная, а косинус – чётная, то:
( displaystyle frac{cosleft( -alpha right)}{-sinleft( -alpha right)}=frac{cosalpha }{-left( -sinalpha right)}=frac{cosalpha }{sinalpha }=ctgalpha )
Этот пример чуть похитрее, будь внимателен!
3. Доказать тождество: ( displaystyle frac{sin2alpha +sin5alpha -sin3alpha }{cosalpha +1-2{sin^{2}}2alpha }=2sinalpha )
Я не хочу трогать синус двойного угла. Уж больно он удобно раскладывается на множители, чего не скажешь о синусе тройного и тем более пятикратного угла.
Поэтому я сверну в произведение последние 2 слагаемых в числителе:
( displaystyle begin{array}{l}frac{sin2alpha +sin5alpha -sin3alpha }{cosalpha +1-2{sin^{2}}2alpha }=frac{sin2alpha +2sinfrac{5alpha -3alpha }{2}cosfrac{5alpha +3alpha }{2}}{cosalpha +1-2{sin^{2}}2alpha }=\=frac{2sinalpha cosalpha +2sinalpha cos4alpha }{cosalpha +1-2{sin^{2}}2alpha }=frac{2sinalpha left( cosalpha +cos4alpha right)}{cosalpha +1-2{sin^{2}}2alpha }end{array})
Конечно, теперь можно было бы и свернуть числитель ещё раз, но я пойду иным путём. В знаменателе у меня тоже спрятана формула, вот она:
( displaystyle 1-2{sin^{2}}2alpha ).
Что это за формула? Это косинус двойного угла!
( displaystyle 1-2{sin^{2}}2alpha =cosleft( 2cdot 2alpha right)=cos4alpha )
( displaystyle frac{2sinalpha left( cosalpha +cos4alpha right)}{cosalpha +1-2{sin^{2}}2alpha }=frac{2sinalpha left( cosalpha +cos4alpha right)}{cosalpha +cos4alpha }=2sinalpha )
Тождество доказано!
Теперь попробуй решить вот этот пример для закрепления пройденного материала.
4. Доказать тождество: ( displaystyle {cos^{4}}alpha -{sin^{4}}alpha +sin2alpha =sqrt{2}cosleft( 2alpha -frac{pi }{4} right))
Проверяем!
( displaystyle begin{array}{l}{cos^{4}}alpha -{sin^{4}}alpha +sin2alpha =left( {cos^{2}}alpha -{sin^{2}}alpha right)left( {cos^{2}}alpha +{sin^{2}}alpha right)+sin2alpha =\=cos2alpha +sin2alpha end{array})
C другой стороны:
( displaystyle begin{array}{l}sqrt{2}cos left( 2alpha-frac{pi }{4} right)=sqrt{2}left( cos{2alpha}cos{frac{pi }{4}}+sin{2alpha}sin{frac{pi }{4}} right)=\=sqrt{2}left( frac{sqrt{2}}{2}cos2alpha+frac{sqrt{2}}{2}sin2alpha right)=sqrt{2}cdot frac{sqrt{2}}{2}left( cos2alpha+sin2alpha right)=\=cos2alpha+sin2alphaend{array})
Тождество доказано!
На этом примере я буду закругляться потихоньку.
Сразу оговорюсь: не переживай и не волнуйся, если у тебя что-то сразу не выходит. Тригонометрия – сложная и очень обширная тема. Здесь все зависит не только от знания формул, но и от мастерства и смекалки. На их выработку тебе понадобится время и усердие.
Более того, скажу тебе вот что: изначально я хотел вставить другой пример в качестве заключительного. Однако на его решение мне понадобилось около 20 минут, причём я использовал ещё более сложную методику его решения. Так что не только ты сталкиваешься с трудностями при решении примеров, трудности бывают у всех!
Все-таки я приведу здесь этот трудный пример, вдруг да и получится у тебя решить его, может, я что-то упустил. Вот он:
5. Упростить: ( displaystyle frac{1+sinalpha -cos2alpha -sin3alpha }{2{sin^{2}}alpha +sinalpha -1})
А вот какой у меня получился в итоге ответ: ( displaystyle 2sinalpha.)
Дерзай!
В следующей части статьи я рассмотрю его решение, но прибегну к ещё более изощрённой технике нежели та, что рассматривалась здесь! Удачи!
Формулы понижения 3-й степени
- ( displaystyle si{{n}^{3}}alpha =frac{3sinalpha -sin3alpha }{4})
- ( displaystyle co{{s}^{3}}a=frac{3cosa+cos3a}{4})
Из данных формул можно вывести формулы тройного угла.
Формулы тройного угла
- ( displaystyle sin3alpha =3sinalpha -4si{{n}^{3}}alpha )
- ( displaystyle cos3a=4co{{s}^{3}}a-3cosa)
- ( displaystyle tg3alpha =frac{3tgalpha -t{{g}^{3}}alpha }{1-3t{{g}^{2}}alpha })
- ( displaystyle ctg3alpha =frac{3ctgalpha -ct{{g}^{3}}alpha }{1-3ct{{g}^{2}}alpha })
Ты мне можешь задать резонный вопрос: как часто эти формулы используются? Я отвечу: постарайся избегать прибегать к ним. Они нужны на тот случай, когда ничего другого уже не можешь придумать.
В частности, они могут быть полезными при решении сложных уравнений, которые встречаются во вступительных экзаменах на математические специальности.
Однако уравнениям у нас будет посвящена отдельная статья, так что здесь я рассмотрю случаи, когда данные формулы позволяют упрощать тригонометрические выражения.
Пример 1
Упростить: ( displaystyle A=frac{1}{3}co{{s}^{3}}alpha cdot sin3alpha +frac{1}{3}si{{n}^{3}}alpha cdot cos3alpha )
Решение:
Подставим вместо ( displaystyle sin3alpha ) и ( displaystyle cos3alpha ) их представления согласно формулам тройного угла, тогда:
( displaystyle begin{array}{l}A=frac{1}{3}co{{s}^{3}}alpha left( 3sinalpha -4si{{n}^{3}}alpha right)+frac{1}{3}si{{n}^{3}}alpha left( 4co{{s}^{3}}alpha -3cosalpha right)=\=co{{s}^{3}}alpha cdot sinalpha -frac{4}{3}co{{s}^{3}}alpha cdot si{{n}^{3}}alpha +frac{4}{3}co{{s}^{3}}alpha cdot si{{n}^{3}}alpha -si{{n}^{3}}alpha cdot cosalpha =\=co{{s}^{3}}alpha cdot sinalpha -si{{n}^{3}}alpha cdot cosalpha end{array})
Теперь вынесем в оставшемся выражении общий множитель за скобки:
( displaystyle co{{s}^{3}}alpha cdot sinalpha -si{{n}^{3}}alpha cdot cosalpha =sinalpha cdot cosalpha left( co{{s}^{2}}alpha -si{{n}^{2}}alpha right))
По формулам двойного угла: ( displaystyle sinalpha cdot cosalpha =frac{1}{2}sin2alpha ), ( displaystyle co{{s}^{2}}alpha -si{{n}^{2}}alpha =cos2alpha ):
( displaystyle sinalpha cdot cosalpha left( co{{s}^{2}}alpha -si{{n}^{2}}alpha right)=frac{1}{2}sin2alpha cdot cos2alpha )
Ну а здесь снова спрятан синус двойного угла:
( displaystyle frac{1}{2}sin2alpha cdot cos2alpha =frac{1}{4}sin4alpha )
Ответ: ( displaystyle A=frac{1}{4}sin4alpha )
Следующий пример попробуй решить самостоятельно. Не уверен, что в нем обязательно использовать формулу тройного угла, но можно сделать и с ее помощью.
Пример 2
Упростить: ( displaystyle frac{1+sinalpha -cos^2{alpha}-cos2alpha -sin3alpha }{2si{{n}^{2}}alpha +sinalpha -1})
Решение:
Моя цель – свести числитель дроби к выражению, зависящему только от синусов одиночного угла. Для этого я преобразую
( displaystyle cos^2 {alpha} =1-si{{n}^{2}}alpha )
( displaystyle cos2alpha =1-2si{{n}^{2}}alpha )
( displaystyle sin3alpha =3sinalpha -4si{{n}^{3}}alpha )
Имеем:
( displaystyle begin{array}{l}frac{1+sinalpha -cos2alpha -sin3alpha }{2si{{n}^{2}}alpha +sinalpha -1}=frac{1+sinalpha -left( 1-si{{n}^{2}}alpha right) -left( 1-2si{{n}^{2}}alpha right)-left( 3sinalpha -4si{{n}^{3}}alpha right)}{2si{{n}^{2}}alpha +sinalpha -1}=\=frac{4si{{n}^{3}}alpha +3si{{n}^{2}}alpha -2sinalpha -1}{2si{{n}^{2}}alpha +sinalpha -1}end{array})
Казалось бы, стало еще хуже. Но это так кажется. Давай для удобства вычислений заменим ( displaystyle sinalpha =t), тогда мне надо упростить дробь
( displaystyle frac{4{{t}^{3}}+3{{t}^{2}}-2t-1}{2{{t}^{2}}+t-1})
Нижнее выражение разложим на множители:
( displaystyle 2{{t}^{2}}+t-1=left( t+1 right)left( 2t-1 right))
С верхним фокус сложнее. Мы не умеем с тобой решать кубические уравнения. Но мы хорошо играем в «угадайку».
Угадай-ка один корень уравнения ( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1=0). Угадал? Я угадал ( displaystyle -1).
Тогда по теореме Безу (которую ты, быть может, знаешь, а если не знаешь, то без проблем отыщешь сам) выражение ( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1) делится без остатка на ( displaystyle t+1)
Разделим столбиком ( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1) на ( displaystyle t+1). Я получу:
( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1=left( t+1 right)left( 4{{t}^{2}}-t-1 right))
В свою очередь ( displaystyle 4{{t}^{2}}-t-1=4left( t-frac{1}{2} right)left( t+frac{1}{4} right))
Окончательно получим:
( displaystyle begin{array}{l}frac{4{{t}^{3}}+3{{t}^{2}}-2t-1}{2{{t}^{2}}+t-1}=frac{4left( t+1 right)left( t-frac{1}{2} right)left( t+frac{1}{4} right)}{left( t+1 right)left( 2t-1 right)}=frac{left( t+1 right)left( 2t-1 right)left( 2t+0,5 right)}{left( t+1 right)left( 2t-1 right)}=\=2t+0,5end{array})
Тогда исходное выражение можно упростить до: ( displaystyle 2sinx+0,5)
В завершение я приведу тебе пример одного уравнения, которое было предложено на психологический (???!!!) факультет одного из ВУЗов в 1990 году. Такие задачи называются задачи-гробы (никакая смекалка без знания конкретной формулы не позволит их решить):
Решить уравнение: ( displaystyle sqrt{3}co{{s}^{3}}x-3co{{s}^{2}}x-3sqrt{3}cosx+1=0)
Не сделав вот такую странную замену: ( displaystyle cosx=tgalpha ) решить его очень сложно. А с такой заменой у нас получится вот что:
( displaystyle sqrt{3}t{{g}^{3}}alpha -3t{{g}^{2}}alpha -3sqrt{3}tgalpha +1=0)
( displaystyle sqrt{3}t{{g}^{3}}alpha -3sqrt{3}tgalpha =3t{{g}^{2}}alpha -1)
( displaystyle sqrt{3}(t{{g}^{3}}alpha -3tgalpha )=3t{{g}^{2}}alpha -1)
( displaystyle -sqrt{3}left( 3tgalpha -t{{g}^{3}}alpha right)=-left( 1-3t{{g}^{2}}alpha right))
( displaystyle frac{left( 3tgalpha -t{{g}^{3}}alpha right)}{left( 1-3t{{g}^{2}}alpha right)}=frac{1}{sqrt{3}})
А вот ради чего весь этот сыр-бор: ( displaystyle frac{left( 3tgalpha -t{{g}^{3}}alpha right)}{left( 1-3t{{g}^{2}}alpha right)}=tg3alpha )
( displaystyle tg3alpha =frac{1}{sqrt{3}})
Это уравнение уже несказанно легче решается. Скоро мы вместе в этом убедимся. Но тут проблема в обратной замене… Тем не менее, эта задача почти нерешаема без знания формулы тангенса тройного угла. Вот так вот.
Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике
ЕГЭ 9. Тригонометрическая окружность, табличные значения
На этом уроке мы узнаем, что такое тригонометрическая окружность и насколько она важна для тригонометрии. М
ы увидим, что она – основной инструмент в тригонометрии: с её помощью можно вывести любую формулу и найти любые значения.
Мы поймем, как “работает” окружность – а значит, поймём тригонометрию в целом.
ЕГЭ 13б. Тригонометрическая окружность
Тригонометрическая окружность – это очень простой и эффективный инструмент для решения любой тригонометрической задачи. На этом уроке вы узнаете как пользоваться тригонометрической окружностью для решения пункта “б” из задачи №13 профильного ЕГЭ.
Пункт “б” задачи №13 ЕГЭ 2020 В 2020 году на ЕГЭ в пункте “б” необходимо было указать корни тригонометрического уравнения принадлежащие отрезку.
Вообще-то решать пункт “б” можно двумя способами: – отметить корни уравнения на единичной окружности (способ разобранный в этом видео); – через двойное неравенство.
И вы должны знать, что второй способ чуть дольше, чем первый, но зато вы сможете проще описать все ваши рассуждения и вам будет сложнее ошибиться.
И еще один плюс второго способа – его проще оформить, так, чтобы к вам не придрались на ЕГЭ.
Мы считаем второй способ (через двойное неравенство) более предпочтительным на ЕГЭ по математике, но теме не менее для глубокого понимания темы (что может выручить на ЕГЭ) необходимо разобраться и с первым способом
Алгебра — ЕГЭ Тригонометрия — ЕГЭ Геометрия — ЕГЭ Стереометрия — ЕГЭ Алгебра — ОГЭ Геометрия — ОГЭ