Как найти трехзначное число егэ


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9.

Источник: Демонстрационная версия ЕГЭ — 2015.


2

Найдите трёхзначное натуральное число, большее 400, которое при делении на 6 и на 5 даёт равные ненулевые остатки и первая слева цифра которого является средним арифметическим двух других цифр. В ответе укажите какое-нибудь одно такое число.


3

Найдите четырёхзначное число, кратное 22, произведение цифр которого равно 24. В ответе укажите какое-нибудь одно такое число.


4

Найдите трёхзначное число, кратное 25, все цифры которого различны, а сумма квадратов цифр делится на 3, но не делится на 9. В ответе укажите какое-нибудь одно такое число.

Номер в банке ФИПИ: FE8DFD


5

Приведите пример четырёхзначного натурального числа, кратного 4, сумма цифр которого равна их произведению. В ответе укажите ровно одно такое число.

Пройти тестирование по этим заданиям

Формулировка задачи: Найдите трёхзначное число A, обладающее всеми следующими свойствами: сумма цифр числа A делится на N; сумма цифр числа A + K делится на N. В ответе укажите какое-нибудь одно такое число.

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 19 (Задачи на цифровую запись числа).

Рассмотрим, как решаются подобные задачи на примерах.

Пример задачи 1:

Найдите трёхзначное число A, обладающее всеми следующими свойствами: сумма цифр числа A делится на 8; сумма цифр числа A + 1 делится на 8; в числе A сумма крайних цифр кратна средней цифре. В ответе укажите какое-нибудь одно такое число.

Решение:

Для удобства назовем наше число abc. Каждая буква обозначает отдельный разряд числа A: a — сотни, b — десятки, c — единицы. Пусть сумма цифр a + b + c делится нацело на 8. Попробуем подобрать такое число A + 1, чтобы сумма его цифр также делилась на 8.

Заметим, что сумма цифр числа A + 1 должна отличаться от суммы цифр числа A на число, кратное 8. Это могут быть числа 8, 16, 24, … . В противном случае она не будет делиться на 8. Рассмотрим все возможные варианты:

Вариант 1. Если c < 9 (разряд единиц не переполнится), то новое число будет равно:

A + 1 = ab(c + 1)

Сумма его цифр a + b + c + 1 отличается от суммы изначального числа A на 1. Поэтому данный вариант не подходит.

Вариант 2. Если c = 9 и b < 9 (чтобы не было переполнения разряда десятков), то новое число будет равно:

A + 1 = a(b + 1)0

Сумма цифр этого числа равна

a + b + 1 + 0 = a + b + 1

Сумма цифр числа A при c = 9 равна:

a + b + 9

Суммы чисел отличаются на 8, поэтому данный вариант подойдет.

Вариант 3. Если c = 9, b = 9, a < 9 (чтобы разряд сотен не переполнился), тогда новое число будет равно:

A + 1 = (a + 1)00

Сумма цифр нового числа равна:

a + 1 + 0 + 0 = a + 1

Сумма цифр числа A при c = 9 и b = 9 равна:

a + 9 + 9 = a + 18

2 суммы отличаются на 17 (18 — 1). Такой вариант не подойдет.

Вариант 4. Если c = 9, b = 9, a = 9, тогда новое число A + 1 будет равно:

A + 1 = 1000

Сумма цифр этого числа равна:

1 + 0 + 0 + 0 = 1

Сумма цифр числа A при a = 9 и b = 9 и c = 9 равна:

9 + 9 + 9 = 27

Получается, что 2 этих числа отличаются на 26 (27 — 1). Этот вариант не подойдет.

Делаем вывод: цифры числа abc должны соответствовать правилу c = 9 и b < 9.

Чтобы сумма цифр числа abc делилась на 8, нужно чтобы она была равна 8, 16 или 24 (Сумма цифр трехзначного числа не может быть больше 27 = 9 + 9 + 9). Поскольку c = 9, b < 9, a > 0, сумма цифр числа A уже превышает 9. Значит сумма цифр числа A должна быть равна 16 или 24.

При поиске подходящего числа нужно учитывать, что a + c должно быть кратно b, то есть делиться нацело на него.

Пусть сумма цифр числа A равна 16. Так как c = 9, на два остальных разряда остается a + b = 16 – 9 = 7, при этом a не может быть равно 0, так как число автоматически перестанет быть трехзначным, и b < 9. Рассмотрим возможные варианты:

  • a = 1 и b = 6; (1 + 9) / 6 – не целое число, значит не подходит;
  • a = 2 и b = 5; (2 + 9) / 5 – не целое число, значит не подходит;
  • a = 3 и b = 4; (3 + 9) / 4 = 3 – целое число, значит число A может быть равно 349;
  • a = 4 и b = 3; (4 + 9) / 3 – не целое число, значит не подходит;
  • a = 5 и b = 2; (5 + 9) / 2 = 7 – целое число, значит число A может быть равно 529;
  • a = 6 и b = 1; (6 + 9) / 1 = 15 – целое число, значит число A может быть равно 619;
  • a = 7 и b = 0; (7 + 9) / 0 – деление на 0, значит не подходит.

Пусть сумма цифр числа A равна 24. Так как c = 9, на два остальных разряда остается a + b = 24 – 9 = 15, при этом a не может быть равно 0, так как число автоматически перестанет быть трехзначным, и b < 9. Рассмотрим возможные варианты:

  • b = 8 и a = 7; (7 + 9) / 8 = 2 – целое число, значит число A может быть равно 789;
  • b = 7 и a = 8; (8 + 9) / 7 – не целое число, значит не подходит;
  • b = 6 и a = 9; (9 + 9) / 6 = 3 – целое число, значит число A может быть равно 969;
  • b = 5 и a = 10 – не подходит, так как в одном разряде помещается только 1 цифра, а число 10 двухзначное;
  • b = 4 и a = 11 – не подходит, см. выше;
  • b = 3 и a = 12 – не подходит, см. выше;
  • b = 2 и a = 13 – не подходит, см. выше;
  • b = 1 и a = 14 – не подходит, см. выше;
  • b = 0 и a = 15 – не подходит, см. выше.

В ответе можно указать любое из чисел 349, 529, 619, 789, 969.

Ответ: 349 или 529 или 619 или 789 или 969

Пример задачи 2:

Найдите трёхзначное число A, обладающее всеми следующими свойствами: сумма цифр числа A делится на 5; сумма цифр числа (A + 4) делится на 5; число A больше 350 и меньше 400. В ответе укажите какое-нибудь одно такое число.

Решение:

Для удобства назовем наше число abc. Каждая буква обозначает отдельный разряд числа A: a — сотни, b — десятки, c — единицы. Пусть сумма цифр a + b + c делится нацело на 5. Попробуем подобрать такое число A + 4, чтобы сумма его цифр также делилась на 5.

Заметим, что сумма цифр числа A + 4 должна отличаться от суммы цифр числа A на число, кратное 5. Это могут быть числа 5, 10, 15, 20, 25, … . В противном случае она не будет делиться на 5. Рассмотрим все возможные варианты:

Вариант 1. Если c < 6 (разряд единиц не переполнится), то новое число будет равно:

A + 4 = ab(c + 4)

Сумма его цифр a + b + c + 4 отличается от суммы изначального числа A на 4. Поэтому данный вариант не подходит.

Вариант 2. Если c ≥ 6 и b < 9 (чтобы не было переполнения разряда десятков), то новое число будет равно:

A + 4 = a(b + 1)(c – 6)

Разряд единиц получен следующим образом:

c + 4 – 10 = c – 6

То есть к c мы прибавляем 4 и получаем число, превышающее 10. 10 уходит в разряд десятков, поэтому в разряде единиц остается только c – 6.

Сумма цифр этого числа равна

a + b + 1 + c – 6 = a + b + c – 5

Она отличается от суммы числа A на 5, поэтому данный вариант подходит.

Вариант 3. Если c ≥ 6, b = 9, a < 9 (чтобы разряд сотен не переполнился), тогда новое число будет равно:

A + 4 = (a + 1)0(c – 6)

Сумма цифр нового числа равна:

a + 1 + 0 + c – 6 = a + c – 5

Сумма цифр числа A при b = 9 равна:

a + 9 + c

Получается, что 2 этих числа отличаются на 14 (9 — (-5)). Такой вариант не подойдет.

Вариант 4. Если c ≥ 6, b = 9, a = 9, тогда новое число A + 4 будет равно:

A + 4 = 100(c – 6)

Сумма цифр этого числа равна:

1 + 0 + 0 + c – 6 = c – 5

Сумма цифр числа A при a = 9 и b = 9 равна:

9 + 9 + c = c + 18

Получается, что 2 этих числа отличаются на 23 (18 — (-5)). Этот вариант не подойдет.

Делаем вывод: цифры числа abc должны соответствовать правилу c ≥ 6 и b < 9. При этом нужно учитывать третье условие в задаче: число A больше 350 и меньше 400. Таким образом, a = 3, 5 ≤ b < 9, c ≥ 6.

Чтобы сумма цифр числа abc делилась на 5, нужно чтобы она была равна 5, 10, 15, 20 или 25 (Сумма цифр трехзначного числа не может быть больше 27 = 9 + 9 + 9). Поскольку a = 3, 5 ≤ b < 9, c ≥ 6, сумма цифр числа A уже превышает 14 (берем минимальные значения 3 + 5 + 6). При этом сумма цифр числа A не может превышать 20 (берем максимальные значения 3 + 8 + 9). Значит сумма цифр числа A должна быть равна 15 или 20.

Пусть сумма цифр числа A равна 15. Так как a = 3, на два остальных разряда остается b + c = 15 – 3 = 12. Рассмотрим возможные варианты:

  • b = 5 и c = 7, число A равно 357;
  • b = 6 и c = 6, число A равно 366;
  • b = 7 и c = 5 – не подходит, так как c ≥ 6 по условию;
  • b = 8 и c = 4 – не подходит, так как c ≥ 6 по условию.

Пусть сумма цифр числа A равна 20. Так как a = 3, на два остальных разряда остается b + c = 20 – 3 = 17. Рассмотрим возможные варианты:

  • b = 5 и c = 12 – не подходит, так как в одном разряде помещается только 1 цифра, а число 12 двухзначное;
  • b = 6 и c = 11 – не подходит, см. выше;
  • b = 7 и c = 10 – не подходит, см. выше;
  • b = 8 и c = 9, число A равно 389.

В ответе можно указать любое из чисел 357, 366, 389.

Ответ: 357 или 366 или 389

Поделитесь статьей с одноклассниками «Найдите трёхзначное число A, обладающее всеми следующими свойствами – как решать».

При копировании материалов с сайта ссылка на источник обязательна. Уважайте труд людей, которые вам помогают.
Нашли ошибку? Выделите текст и нажмите Ctrl + Enter.

Предложите другой способ решения задачи «Найдите трёхзначное число A, обладающее всеми следующими свойствами». Возможно, он окажется более понятным для кого-нибудь:


Свойства чисел


Задание №19 ЕГЭ по математике весьма необычно. Для его решения необходимо применить знания в области теории чисел. Тем не менее, задание является весьма решаемым, однако для школьников с оценкой хорошо и ниже я рекомендовал бы оставить это задание на последнюю очередь. Перейдем к рассмотрению типового варианта.


Разбор типовых вариантов заданий №19 ЕГЭ по математике базового уровня


Вариант 19МБ1

[su_note note_color=”#defae6″]

Найдите трехзначное число, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9. В ответе укажите какое-нибудь оно такое число.

[/su_note]

Алгоритм выполнения:
  1. Ввести условные обозначения.
  2. Записать условия с помощью условных обозначений.
  3. Преобразовать полученные выражения.
  4. Логически рассуждая перебрать все возможные варианты, проверить их соответствие условиям.
Решение:

Обозначим первую цифру числа x, а вторую – y. Тогда третье число с учетом суммы цифр равной 20 будет равно 20 – (x + y). (x + y) обязательно меньше 10, иначе сумма равная 20 не получится.

По условию сумма квадратов цифр делится на 3, но не делится на 9. Запишем сумму квадратов цифр:

x 2 + y2 + (20 – (x + y))2

Преобразуем полученное выражение. Преобразуем квадрат разности с учетом формулы приведения.

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(20 – (x + y))2 = 400 -40(x + y) + (x + y)2

Подставим получившееся выражение в начальное, получим:

x 2 + y2 + (20 – (x + y))2 = x 2 + y2 + 400 – 40(x + y) + (x + y)2

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + y)2= x2 + 2xy + y2

Подставим:

x 2 + y2 + (20 – (x + y))2 = x 2 + y2 + 400 – 40(x + y) + (x + y)2 = x 2 + y2 + 400 – 40(x + y) + x2 + 2xy + y2

Приведем подобные слагаемые(сложим x2 с x2 и y2 с y2), получим:

x 2 + y2 + 400 – 40(x + y) + x2 + 2xy + y2 = 2x 2 + 2y2 + 2 · 200 – 2 · 20(x + y) + 2xy

Вынесем множитель 2 за скобку:

2x 2 + 2y2 + 2 · 200 – 2 · 20(x + y) + 2xy = 2(x 2 + y2 + 200 – 20(x + y) + xy)

Для удобства объединим 200 и 20(x + y) и вынесем 20 за скобку, получим:

2(x 2 + y2 + 20(10 – (x + y)) + xy)

Множитель 2 – четный, поэтому он никак не влияет на делимость на 3 или 9. Можем его не брать в расчет и рассматривать выражение:

x 2 + y2 + 20(10 – (x + y)) + xy

Предположим, что и x, и y делятся на 3. Тогда x 2 + y2 + xy делится на 3, а 20(10 – (x + y)) – не делится. Следовательно, и вся сумма x 2 + y2 + 20(10 – (x + y)) + xy на 3 не делится.

Предположим, что на 3 делится только одна цифра. Тогда, учитывая, что (x + y) обязательно меньше 10, иначе сумма равная 20 не получится, подберем возможные пары.

(3;8), (6;5), (6;7), (6;8), (9;2), (9;4), (9;5), (9;7), (9;8).

Методом подстановки проверим, соответствуют эти пары условию.

x 2 + y2 + 20(10 – (x + y)) + xy = 3 2 + 82 + 20(10 – (3 + 8)) + 3 · 8 = 9 + 64 – 20 + 24 = 77

x 2 + y2 + 20(10 – (x + y)) + xy = 6 2 + 52 + 20(10 – (6 + 5)) + 6 · 5 = 36 + 25 – 20 + 30 = 71

x 2 + y2 + 20(10 – (x + y)) + xy = 6 2 + 72 + 20(10 – (6 + 7)) + 6 · 7 = 36 + 49 – 60 + 42 = 67

x 2 + y2 + 20(10 – (x + y)) + xy = 6 2 + 82 + 20(10 – (6 + 8)) + 6 · 8 = 36 + 64 – 80 + 48 = 68

x 2 + y2 + 20(10 – (x + y)) + xy = 9 2 + 22 + 20(10 – (9 + 2)) + 9 · 2 = 81 + 4 – 20 + 18 = 83

x 2 + y2 + 20(10 – (x + y)) + xy = 9 2 + 42 + 20(10 – (9 + 4)) + 9 · 4 = 81 + 16 – 60 + 36 = 73

Ни одна из полученных сумм не удовлетворяет условию «сумма квадратов цифр делится на 3, но не делится на 9».

Следующие пары можно не проверять, так как они дают уже имеющиеся тройки цифр.

Предположим, что ни одна из цифр числа не делится на 3.

Возможные пары:

(4;7), (5;7), (5;8), (7;8).

Проверим:

x 2 + y2 + 20(10 – (x + y)) + xy = 4 2 + 72 + 20(10 – (4 + 7)) + 4 · 7 = 16 + 49 – 20 + 28 = 73

x 2 + y2 + 20(10 – (x + y)) + xy = 5 2 + 72 + 20(10 – (5 + 7)) + 5 · 7 = 25 + 49 – 40 + 35 = 69

Сумма 69 удовлетворяет условию «сумма квадратов цифр делится на 3, но не делится на 9». Следовательно, подходят цифры 5,7,8 в любом порядке.

Ответ: 578


Вариант 19МБ2

[su_note note_color=”#defae6″]

На 6 карточках написаны цифры 1; 2; 3; 6; 9; 9 (по одной цифре на каждой карточке). В выражении □ + □□ + □□□ вместо каждого квадратика положили карточку из набора. Оказалось, что полученная сумма делится на 10. Найдите эту сумму. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения:
  1. Вспомнить признак делимости на 10.
  2. Разместить последние цифры каждого слагаемого таким образом, чтобы в сумме получилось 10.
  3. Расположить оставшиеся карточки в произвольном порядке.
Решение:

1. Если сумма делится на 10 нацело, то последняя цифра должна быть 0, остальные цифры значения не имеют.

2. В первый квадрат поместим цифру 1, в следующем числе на последнем месте – цифру 3 (или 6), а в третьем – цифру 6 (или 3), получим (сумма 1+3+6=10):

image001

3. Остальные цифры заполним произвольно, например, так:

image002

и получится сумма

1+23+996 = 1020.

Ответ: 1020


Вариант 19МБ3

[su_note note_color=”#defae6″]

На 6 карточках написаны цифры 1; 2; 2; 3; 5; 7 (по одной цифре на каждой карточке). В выражении □ + □□ + □□□ вместо каждого квадратика положили карточку из набора. Оказалось, что полученная сумма делится на 20. Найдите эту сумму. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения:
  1. Вспомнить признак делимости на 10 и сформулировать признак делимости на 20.
  2. Разместить последние цифры каждого слагаемого таким образом, чтобы в сумме получилось 10.
  3. Разместить предпоследние цифры каждого слагаемого таким образом, чтобы в сумме получилось четное число в результате с учетом суммы первых цифр.
  4. Расположить оставшиеся карточки в произвольном порядке.
Решение:

1. Чтобы сумма делилась на 20, она должна заканчиваться на 0 и вторая цифра с конца должна быть четной (делиться на 2). Чтобы в конце суммы получить 0, первые три карточки следует выбрать так:

image001

2. Чтобы вторую цифру получить четной, можно взять карточки 2 и 7 (к ней будет добавляться еще 1 от первой суммы 10):

image002

3. В последнее место помещаем оставшуюся цифру 1, в результате имеем:

image003

и сумма равна:

2+23+175=200.

Ответ: 200


Вариант 19МБ4

[su_note note_color=”#defae6″]

Найдите четырехзначное число, кратное 15, произведение цифр которого больше 0, но меньше 25. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Если произведение >0, то, значит, оно не равно нулю. Следовательно, ни один из множителей не может быть равным 0.
  2. Если произведение кратно 15, следовательно, оно кратно 5 и кратно 3.
  3. Если произведение кратно 5, то результат его должен оканчиваться 0 или 5. В данном случае берем 5, т.к. 0 не может быть одним из множителей (см.п.1).
  4. Итак, последняя цифра числа равна 5. Тогда произведение первых трех равно 25:5=5. Это означает, что нужно подобать 3 цифры так, чтобы их произведение было менее 5.
  5. Из всех полученных наборов цифр выбираем такой, чтобы сумма этих цифр плюс 5 (последняя, 4-я цифра) была кратной 3.
Решение:

Поскольку по условию произведение всех цифр кратно 15, то оно кратно 5 и 3.

Кратность 5 означает, что последней цифрой числа может быть только 0 или 5. Но 0 в виде последней цифры означал бы, что произведение всех 4-х цифр стало бы равным 0; а это противоречит условию. Тогда последняя цифра искомого числа равна 5.

Тогда получим: x·y·z·5<25 → x·y·z<5, где x, y, z – соответственно, 1-я, 2-я и 3-я цифры искомого числа.

Меньше 5 произведение таких цифр: 1 1 1, 1 1 3, 1 1 2, 1 2 2.

Согласно признаку делимости на 3, выбираем из этих наборов такой, чтобы сумма его цифр плюс 5 делилась на 3:

1+1+1+5=8 – не подходит;

1+1+3+5=10 – не подходит;

1+2+2+5=10 – не подходит

1+1+2+5=9 – подходит.

Тогда условию задачи соответствуют числа: 1125, 1215, 2115.

Ответ: 1125, 1215, 2115


Вариант 19МБ5

[su_note note_color=”#defae6″]

Вычеркните в числе 85417627 три цифры так, чтобы получившееся число делилось на 18. В ответе укажите какое-нибудь одно получившееся число.

[/su_note]

Алгоритм выполнения
  1. Число делится на 18, если оно кратно 2 и 9.
  2. Кратность 2 означает, что число должно быть четным. Поэтому сразу отбрасывают последнюю – нечетную – цифру 7.
  3. Кратность 9 означает, что сумма его цифр делится на 9. Значит, находим сумму оставшихся цифр. Далее определяем подходящее для полученной суммы число, кратное 9. Число должно быть таким, чтобы: а) оно было меньшим суммы цифр; б) разница между этой суммой и найденным числом позволяла выделить в числе 2 цифры, сумма которых была бы равной этой разнице. Вычеркиваем эти цифры.
Решение:

Т.к. по условию число кратно 18, то оно кратно 2 и кратно 9.

Поскольку число кратно 2, то оно должно оканчиваться четной цифрой. 7 – нечетная цифра, поэтому вычеркиваем ее. Осталось: 8541762.

Т.к. полученное число кратно 9, то сумма его цифр должна делиться на 9. Находим общую сумму его цифр: 8+5+4+1+7+6+2=33. Ближайшее число, которое делится на 9, – это 27.

33–27=6 – это сумма двух цифр, которые нужно вычеркнуть. Пары цифр, которые при этом в сумме дают 6, – это 5 и 1 или 4 и 2. Вычеркнув их, получаем соответственно: 84762 или 85176.

Кроме этого, на 9 делится 18. Тогда 33–18=15. В этом случае вычеркнуть придется 8 и 7. Получаем: 54162.

На 9 делится еще и 9, однако 33–9=24, а пары цифр, которые дали бы в сумме 24, естественно, не существует.

Ответ: 84762, 85176, 54162


Вариант 19МБ6

[su_note note_color=”#defae6″]

На шести карточках написаны цифры 3; 6; 7; 7; 8; 9 (по одной цифре на каждой карточке). В выражении 

Вместо каждого квадратика положили карточку из данного набора. Оказалось, что полученная сумма делится на 10, но не делится на 20.

В ответе укажите какую-нибудь одну такую сумму.

[/su_note]

Алгоритм выполнения
  1. Во 2-м предложении текста задачи фактически представлено условие, при котором сумма делится на 10, однако не делится на 2.
  2. Из п.1 следует, что результирующее число должно оканчиваться 0, а предпоследняя его цифра должна быть нечетной.
Решение:

Для удобства восприятия разместим карточки в столбик:

C:UsersКсеньяDesktop111мое3_1.jpg

Если число делится на 10, но не делится на 20, значит, оно точно не делится на 2 без последнего нуля.

Поскольку число кратно 10, то оно должно оканчиваться нулем. Поэтому в последнем разряде (единиц) нужно расположить 3 карточки с такими цифрами, чтоб их сумма оканчивалась на 0. Подходят здесь карточки: 1) 6, 7, 7; 2) 3, 8, 9. Их суммы равны 20. Соответственно, 0 мы пишем под чертой, а 2 переносим на предыдущий разряд (десятков):

C:UsersКсеньяDesktop111мое3_1_2.jpg C:UsersКсеньяDesktop111мое3_2_2.jpg

Чтобы число не делилось на 20, необходимо, чтобы перед нулем стояла нечетная цифра. Нечетная сумма здесь получится тогда, когда одно из слагаемых будет нечетным, а два других четными. Одно из этих (других) слагаемых – это перенесенная 2. Поэтому из оставшихся цифр следует взять: 1) 3 и 8; 2) 6 и 7. Получаем:

C:UsersКсеньяDesktop111мое3_1_3.jpg C:UsersКсеньяDesktop111мое3_2_3.jpg

На место сотен ставим последнюю (оставшуюся) карточку с цифрой: 1) 9; 2) 7. Получаем, соответственно, числа 1030 и 850:

C:UsersКсеньяDesktop111мое3_1_4.jpg C:UsersКсеньяDesktop111мое3_2_4.jpg

Ответ: 1030,850


Вариант 19МБ7

[su_note note_color=”#defae6″]

Найдите четное трехзначное натуральное число, сумма цифр которого на 1 меньше их произведения. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Вводим буквенные обозначения для цифр искомого числа. Исходя из условия задачи, составляем уравнение.
  2. Выражаем одну из цифр через 2 другие.
  3. Подбираем для этих 2-х (других) цифр значения так, чтобы 3-я (выраженная) представляло бы собой натуральное число. Вычисляем 3-ю цифру.
  4. Формируем искомое число так, чтобы оно было четным.
Решение:

Пусть цифры искомого числа – x, y, z. Тогда получаем:

xyz–(x+y+z)=1

xyz–x–y–z=1

zxy–z=x+y+1

z(xy–1)=x+y+1

z=(x+y+1)/(xy–1)

Знаменатель в этом выражении должен быть целым и положительным. Для простоты (а также для гарантии правильных расчетов) примем, что он должен быть равен 1. Тогда имеем: ху–1=1 → ху=2. Поскольку х и у это цифры, то их значения могут быть равными только 1 и 2 (т.к. только произведение этих однозначных натур.чисел дает в результате 2).

Отсюда z составляет: z=(1+2+1)/(1·2–1)=4/1=4.

Итак, имеем цифры: 1, 2, 4.

Т.к. по условию итоговое число должно быть четным, то оканчиваться оно может только 2 или 4. Тогда правильными вариантами чисел будут такие:

124, 142, 214, 412.

Ответ: 124, 142, 214, 412


Вариант 19МБ8

[su_note note_color=”#defae6″]

Найдите шестизначное число, которое записывается только цифрами 2 и 0 и делится на 24. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Если число делится на 24, значит, оно делится на 8 и на 3.
  2. Согласно признаку делимости на 8, 3 последних цифры его должны образовывать число, которое кратно 8.
  3. Чтобы число делилось на 3, необходимо, чтобы сумма его цифр делилась на 3. Учитывая уже сформированную 2-ю часть числа (см.п.2), дополняем его первыми тремя цифрами соответственно.
Решение:

Чтобы искомое число было кратно 24, требуется, чтобы оно делилось на 8 и в то же время на 3.

Число делится на 8, если последние его 3 цифры образуют число, кратное 8. С использованием только двоек и нулей такое трехзначное число можно образовать так: 000, 002, 020, 022, 200, 202, 220, 222. Из этих чисел на 8 делится только 000 и 200.

Теперь нужно дополнить искомое число первыми 3-мя цифрами так, чтобы оно делилось еще и на 3.

В 1-м случае это будет единственный вариант: 222000.

Во 2-м случае вариантов два: 220200, 202200.

Ответ: 222000, 220200, 202200


Вариант 19МБ9

[su_note note_color=”#defae6″]

Найдите четырехзначное число, кратное 15, произведение цифр которого больше 35, но меньше 45. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Если число кратно 15, значит, оно кратно 3 и 5.
  2. Применяем признак делимости на 5 и условие задачи, согласно которому произведение цифр числа ≠0. Так получаем, что последняя цифра искомого числа – только 5.
  3. Делим 35 на 5 и 45 на 5. Узнаем диапазон значений, которые может принимать произведение первых 3-х цифр числа. Узнаем, что оно может быть равно только 8.
  4. Определяем последовательности цифр, которые дают при перемножении 8.
  5. Проверяем полученные из найденных цифр числа на кратность трем.
Решение:

Кратность искомого числа 15 дает 2 условия: оно должно делиться на 5 и на 3.

Если число кратно 5, то оно должно оканчиваться цифрой 5 или 0. Однако 0 в данном случае использовать нельзя, поскольку при этом произведение цифр числа оказывается равным 0. По условию же это не так. Итак, последняя – 4-я – цифра числа равна 5.

По условию 35 < x·5 < 45, где х – произведение первых 3-х цифр числа. Тогда имеем: 7 < x < 9. Это неравенство верно только при х=8. Следовательно, для первых 3-х цифр должны выполняться равенства:

1·1·8=8, 1·2·4=8.

Отсюда получаем числа:

1185; 1245.

Проверяем их на кратность 3:

1+1+8+5=15;

1+2+4+5=12.

Вывод: оба найденные числа кратны 3. Плюс кратны их комбинации:

1815; 8115; 1425; 2145; 2415; 4125; 4215.

Ответ: 1815; 8115; 1425; 2145; 2415; 4125; 4215


Вариант 19МБ10

[su_note note_color=”#defae6″]

Найдите пятизначные число, кратное 25, любые две соседние цифры которого отличаются на 2. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Принимаем во внимание, что на 25 делятся числа, которые придется последовательно делить на 5 дважды. Определяем, какой парой цифр они должны оканчиваться.
  2. Учитывая, что 2-й частью условия является различие каждой соседней пары цифр исключительно на 2 единицы, выбираем подходящий вариант (или варианты) цифр.
  3. Способом подбора находим остальные цифры и, соответственно, числа. Одно из них запишем в ответе.
Решение:

Если число делится на 25, то оно должно оканчиваться на: 00, 25, 50, 75. Т.к. соседние цифры должны отличаться строго на 2, то использовать для 4-й и 5-й цифр можем только 75. Получаем: ***75.

Далее ищем 3-ю цифру:

  1. **975 или
  2. **575.

Дальше получаем по аналогии:

1) *7975 → 97975 или 57975;

2) *3575 → 13575 или 53575, *7575 → 57575 или 97575.

Ответ: 97975, 57975, 13575, 53575, 57575, 97575


Вариант 19МБ11

[su_note note_color=”#defae6″]

Найдите трехзначное натуральное число, большее 600, которое при делении на 3, на 4 и на 5 дает в остатке 1 и цифры которого расположены в порядке убывания слева направо. В ответе укажите какое-нибудь такое число.

[/su_note]

Алгоритм выполнения
  1. Определяем диапазон значений для 1-й цифры числа (сотен).
  2. Определяем, какой может быть последняя цифра (единицы), приняв во внимание: 1) при делении на 5 дает в остатке 1; 2) на этом месте не может быть четная цифра, поскольку это одно из условий делимости на 4.
  3. Способом подбора определяем набор чисел, которые при делении на 3 дают в остатке 1.
  4. Из этого набора (см.п.3) отбрасываем числа, которые при делении на 4 дают остаток, отличный от 1.
Решение:

Т.к. искомое число >600 и при этом является трехзначным, то 1-й цифрой может быть только 6, 7, 8 или 9. Тогда получаем для искомого числа:

6***

7***

8***

9***

Если число при делении на 5 должно давать в остатке 1, значит, оно может оканчиваться только на 0+1=1 или на 5+1=6. Шестерку тут отбрасываем, поскольку в этом случае число четное и потенциально может делиться на 4. Поэтому имеем:

6**1

7**1

8**1

9**1

Если число при делении на 3 дает в остатке 1, значит, сумма его цифр должна быть кратной 3 плюс 1. Кроме того, учитываем, что цифры должны располагаться в числе в порядке убывания. Подбираем такие числа:

631

721

751

841

871

931

961

Из этой последовательности отбрасываем числа, для которых не выполняется условие о том, что число при делении на 4 должно давать в остатке 1.

Т.к. признак делимости на 4 заключается в том, что 2 последние цифры должны делиться на 4, то получаем:

для 631: 31=28+3, т.е. в остатке имеем 3; число не подходит

для 721: 21=20+1, т.е. в остатке – 1; число подходит

для 751: 51=48+3, т.е. в остатке – 3; число не подходит

для 841: 41=40+1, т.е. в остатке – 1; число подходит

для 871: 71=68+3, т.е. в остатке – 3; число не подходит

для 931: 31=28+3, т.е. в остатке – 3; число не подходит

для 961: 61=60+1, т.е. в остатке – 1; число подходит

Ответ:  721, 841, 961


Вариант 19МБ12

[su_note note_color=”#defae6″]

Найдите трехзначное натуральное число, большее 400, но меньшее 650, которое делится на каждую свою цифру и все цифры которого различны и не равны 0. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Из условия следует, что числа могут начинаться только на 4,5 или 6.
  2. При анализе чисел 4-й сотни отбрасываем числа: 1) 1-го десятка, т.к. в них содержится 0; 2) 4-го десятка, т.к. в этом случае первые две цифры совпадут; 3) числа 5-го десятка, т.к. они должны оканчиваться только на 5 или 0, что недопустимо. Кроме того, для всех четных десятков можно рассматривать только четные числа.
  3. Числа 5-й сотни отбрасываем полностью, т.к. чтобы делиться на каждую свою цифру, они должны оканчиваться 5 или 0.
  4. Для чисел 6-й сотни рассматривать можно только: 1) четные; 2) кратные 3; 3) не оканчивающиеся 0.
Решение:

Числа 40* и 4*0 отбрасываем, т.к. они содержат 0.

Числа 41* годятся только четные, т.к. это обязательное условия для кратности 4. Анализируем:

412 – подходит

414 – не подходит, т.к. в нем совпадают цифры

416 – не подходит, т.к. не делится на 6

418 – не подходит, т.к. не делится ни на 4, ни на 8

Из чисел 42* годятся только четные, поскольку должны делиться на 2:

422 и 424 – не подходят, т.к. в них совпадают цифры

426 – не подходит, т.к. не делится на 4

428 – не подходит, т.к. не делится на 8

Числа 43* годятся только четные и кратные 3. Поэтому тут подходит только 432.

Числа 44* не подходят полностью.

Числа 45* не подходят полностью, т.к. они должны оканчиваться только 5 (т.е. быть нечетными) или 0.

Числа 46*, 47*, 48*, 49* не подходят полностью, т.к. для каждого из них не выполняется 1 или несколько условий.

Числа 5-й сотни не годятся полностью. Они должны делиться на 5, а для этого оканчиваться либо 5, либо 0, что не допускается.

Числа 60* не годятся полностью.

Среди остальных можно рассматривать только четные, кратные 3, не оканчивающиеся 0. Опуская подробности перебора чисел, оговорим только, что из них годятся: 612, 624, 648. Для остальных не выполняется одно или несколько условий.

Ответ: 412, 432, 612, 624, 648


Вариант 19МБ13

[su_note note_color=”#defae6″]

Найдите четырехзначное число, кратное 45, все цифры которого различны и четны. В ответе укажите какое-нибудь одно такое число.

[/su_note]

Алгоритм выполнения
  1. Если число кратно 45, значит, оно делится на 5 и на 9.
  2. Рассматривать следует только числа четных сотен.
  3. Оканчиваться числа могут только 0, т.к. 5 – нечетная цифра.
  4. Сумма цифр числа должна быть равна 18. Только в этом случае можно составить его из всех четных цифр.
Решение:

Т.к. по условию цифры должны быть четными, то рассматривать можно только числа 2-й, 4-й, 6-й и 8-й тысяч. Это значит, что начинаться оно может с 2, 4, 6 или 8.

Если число кратно 45, то оно кратно 5 и кратно 9.

Если число кратно 5, то оно должно оканчиваться 5 или 0. Но поскольку все цифры должны быть четными, то подходит здесь только 0.

Т.о., получаем шаблоны чисел: 2**0, 4**0, 6**0, 8**0. Отсюда следует, что для проверки кратности 9 требуется, чтобы сумма первых 3-х цифр была равной 9, или 18, или 27 и т.д. Но подходит тут только 18. Основания: 1) для получения в сумме 9 нужно, чтобы одно из слагаемых было нечетным, а это противоречит условию; 2) 27 не подходит потому, что даже если взять самую большую 1-ю цифру 8, то сумма 2-й и 3-й цифр будет равна 27–8=19, что превышает допустимый предел. Еще большие суммы цифр, кратные 9, не подходят тем более.

Рассматриваем числа по тысячам.

Числа 2**0. Сумма средних цифр равна: 18–2=16. Получить 16 из четных чисел можно только так: 8+8. Однако цифры не должны повторяться. Поэтому подходящих условию чисел здесь нет.

Числа 4**0. Сумма средних цифр: 18–4=14. 14=8+6. Поэтому получаем: 4680 или 4860.

Числа 6**0. Сумма средних цифр: 18–6=12. 12=6+6, что не подходит, т.к. цифры повторяются. 12=4+8. Получаем: 6480 или 6840.

Числа 8**0. Сумма средних цифр: 18–8=10. 10=2+8, что не подходит, т.к. при этом будет повторяться 8. 10=4+6. Получаем: 8460 или 8640.

Ответ: 4680, 4860, 6480, 6840, 8460, 8640

Даниил Романович | Просмотров: 11.5k

20
Янв 2017

База ЕГЭ Задание 19

Задача 1366. Найдите шестизначное натуральное число, которое записывается только цифрами 2 и 0 и делится на 24. В ответе укажите какое-нибудь одно такое число.

Решение показать

Задача 1376. Найдите трехзначное натуральное число, которое при делении на 4, на 5 и на 6 дает в остатке 2 и все цифры которого четные. В ответе укажите какое-нибудь одно такое число.

Решение показать

Задача 1398. Вычеркните в числе 181615121 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно такое число.

Решение показать

Задача 6089.   Найдите трехзначное число Подготовка к ГИА и ЕГЭ, обладающее следующими свойствами:

В ответе укажите какое-нибудь одно такое число.

Решение показать

Задача 6100. Найдите четырехзначное число, кратное 15, произведение цифр которого больше 35 но меньше 45. В ответе укажите какое-нибудь одно такое число. 

Решение показать

Задача 6112. Найдите четырехзначное число, кратное 12, произведение цифр которого равно 10. В ответе укажите какое-нибудь одно такое число. 

Решение показать

Задача 6123. Найдите четырехзначное число, кратное 44, любые две соседние цифры которого отличаются отличаются на 1. В ответе укажите какое-нибудь одно такое число. 

Решение показать

Задача 6134. Найдите четырехзначное число, кратное 66, все цифры которого различны и четны. В ответе укажите какое-нибудь одно такое число. 

Решение показать

Задача 6176. Найдите трехзначное число, кратное 70, все цифры которого различны, а сумма квадратов цифр делится на 5, но не делится на 25. В ответе укажите какое-нибудь одно такое число.

Решение показать

Задача 6186. Найдите трехзначное натуральное число, большее 400 но меньшее 650, которое делится на каждую свою цифру, и все цифры которого различны и не равны нулю. В ответе укажите какое-нибудь одно такое число. 

Решение показать

Задача 6198. Найдите трехзначное натуральное число большее 500, которое при делении на 5 и на 8 дает равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите  какое-нибудь одно такое число.

Решение показать

Задача 6220. Найдите трехзначное натуральное число, кратно 4, сумма цифр которого равна их произведению. В ответе укажите како-нибудь одно такое число. 

Решение показать

Задача 9600. Цифры четырехзначного числа, кратного 5, записали в обратном порядке. Затем из первого числа вычли второе и получили 1458. В ответе укажите какое-нибудь одно такое число. 

Решение показать

Задача 9616. Найдите четырехзначное число, которое в три раза меньше четвертой степени некоторого натурального числа.  В ответе укажите какое-нибудь одно такое число. 

Решение показать

Для вас другие записи этой рубрики:

Решение всех прототипов задания 19 (база ЕГЭ).

Анна Малкова

В этой статье мы расскажем, какие задачи встретились на ЕГЭ-2022 по математике под номером 18. Это последняя в варианте, самая сложная задача ЕГЭ. Тема – числа и их свойства.

В этом году они действительно были непростыми, нестандартными. Но есть и хорошая новость: в каждой из них пункт (а) решался за 3 минуты.

Начнем с наиболее стандартной из них, задачи 18 из московского варианта. Здесь мы можем ввести переменные и сделать «заготовку», то есть математическую модель для всех пунктов задачи.

1. ЕГЭ-2022, Москва.

С натуральным трехзначным числом проводят следующую операцию: из числа вычитают его сумму цифр и полученный результат делят на 3.

а) Может ли результатом выполнения операции быть число 201?

б) Может ли результатом выполнения быть число 251?

в) Сколько различных результатов можно получить, если применить данную операцию для всех трехзначных чисел от 600 до 999 включительно?

Решение:

Сделаем «заготовку» для всех пунктов задачи.

Запишем число А в виде: A=overline{abc}=100a+10b+c .

По условию, frac{A-a-b-c}{3}=m; displaystyle frac{100a+10b+c-a-b-c}{3}=m.

99a+9b=3m;
33a+3b=mRightarrow mvdots 3.

а) Да, может быть m=201.

33m+3b=201Leftrightarrow 11a+b=67

Подберем a и b.

Пусть a=6;  b=1;  11cdot 6+1=67. Заметим, что с – любое.

Пример: A=614,    frac{614-11}{3}=201.

б) Нет, не может быть m=251, так как mvdots 3, а 251 не делится на 3, пришли к противоречию.

в) 600le Ale 999.

Выясним, какие значения может принимать m.

Так как a, b и с – цифры числа А, 6le ale 9;  0le ble 9;  0le cle 9.

m=33a+3bge 33cdot 6+3cdot 0, то есть m ge 198,
m=33a+3ble 33cdot 9+3cdot 9, то есть m le 324.
Значит, 198le mle 324;  mvdots 3.

Числа m являются членами арифметической прогрессии, где

d=3; { a}_1=198,  a_n=324. Найдем n – количество членов этой прогрессии.

a_n=a_1+dleft(n-1right) ;

324=198+3left(n-1right);

108=66+n-1 ;

n=43.

Мы получили, что чисел вида m=33a+3b не более 43, и они являются членами арифметической прогрессии a_k=198+3k, где 0le kle 42, всего таких чисел не более 43.

Проверим, может ли быть m =a_1 = 198.

m=33a+3b;

33a+3b=198;

11a + b = 66, возможно при a = 6, b = 0, c = любое.

Получаем числа 600; 601dots 609, всего 10 чисел, для которых m = 198.

Случай m = 324 также возможен. Тогда 33a+3b=324,

11 a + b = 108, подходят а = 9, b = 9, с – любое.

Проверим, может ли m быть равным любому члену арифметической прогрессии a_k=198+3k.

Пусть m=198+3k. С другой стороны, m=33a+3b.

Получим: 33a+3b=198+3k,

11a+b=66+k;

11a-66=k-b;

11left(a-6right)=k-b.

По условию, age 6, то есть a-6ge 0.

Тогда k-bge 0 и left(k-bright)vdots 11.

Пусть k-b=11p, где pin Z, pge 0.

Так как b – цифра, 0le ble 9.

k=11p+b;

11ple kle 11p+9.
Это значит, что k может делиться на 11 без остатка. Или давать остаток от 1 до 9 от деления на 11. Но k не может давать остаток 10 от деления на 11.

Раньше мы нашли, что 0le kle 42. Исключим числа, дающие остаток 10 от деления на 11. Это 10, 21, 33, всего 3 числа. Получаем, что m может принимать не более 43 – 3 = 40 различных значений. Это оценка.

Для каждого m можно подобрать такие a и b, что условие задачи выполняется. Так, как мы сделали для m = 198 и m= 324.

Ответ: а) да; б) нет; в) 40.

В следующей задаче нет ни переменных, ни уравнений. А решение – это текст, сочинение-рассуждение на заданную тему : -) Напомним, что если в каком-либо пункте задачи 18 ответ «да», то нужно написать: «Да, может, вот пример». Если ответ «нет» — надо привести доказательство, почему не может такого быть.

2. ЕГЭ-2022, Санкт-Петербург В трех коробках лежат камни: в первой 101 камень, во второй 102, в третьей 104, в четвертой коробке камней нет.

За 1 ход берут по 1 камню из любых трех коробок и кладут в оставшуюся.

а) Может ли в 1 коробке получиться 101 камень, во второй 102, в третьей 100, в четвертой 4 камня?

б) Может ли оказаться 306 камней в четвертой коробке через некоторое количество ходов?

в) какое наибольшее количество камней может оказаться в первой коробке?

Решение:

а) Да, может.

Сделаем следующие действия:

(101; 102; 104; 0);

(100; 101; 103; 3);

(99; 100; 102; 6);

(102; 99; 101; 5);

(101; 102; 100; 4).

б) Приведем решение И. В. Яковлева:

Такого случиться не может.

Допустим, такое произошло.

Всего камней 307. Если в четвертой коробке 306 камней, то значит, еще в какой-либо коробке находится 1 камень, и 2 коробки пустые.

После каждого хода четность числа камней в каждой коробке меняется на противоположную, поскольку либо в коробку добавляют 2 камня, либо убирают 1 камень.

Поэтому количества камней в коробках 1 и 2 не смогут стать равными (у них изначально была разная четность). Аналогично, не могут стать равными количества камней в коробках 1 и 3.

Значит, финальная ситуация обязательно 1, 0, 0, 306. Но после каждого хода количества камней в коробках 2 и 3 либо одновременно уменьшаются на 1, либо в одной из них -1, а в другой +3, так что количества камней в коробках 2 и 3 всегда отличаются не менее чем на 2. Противоречие.

Другой способ доказательства:

После каждого хода для количеств камней в любых двух коробках имеем -1, -1 или -1, +3. В обоих случаях остаётся неизменной разность остатков от деления этих чисел на 4. Исходно в первых трёх коробках эти остатки разные (а именно, 1, 2 и 0), то есть все три разности –- ненулевые. Значит, они будут ненулевыми после каждого хода, так что числа камней в первых трёх коробках всегда будут попарно различны. Следовательно, мы никогда не придём к ситуации, когда в двух из этих коробок нули (чтобы в четвёртой было 306).

в) Найдем наибольшее количество камней, которое может оказаться в первой коробке.

Все 307 камней не могут в ней оказаться, потому что тогда в остальных коробках будет 0 камней. В пункте (б) доказано, что это невозможно.

Предположим, что в 1-й коробке 306 камней. Тогда во 2-й коробке 1 камень, в 3-й и 4-й 0 камней. Другие случаи невозможны, поскольку только в 3-й и 4-й коробках количество камней изначально делилось на 4.

Но ситуация 306; 1; 0; 0 также невозможна, поскольку количества камней в коробках 2 и 3 всегда отличаются не менее чем на 2.

В первой коробке может быть 305 камней. Приведем пример, как это получить.

Первоначально в коробках: (101; 102; 104; 0).

Переложим 25 раз по одному камню из первых трех коробок в четвертую. Получим:

(76; 77; 79; 75). Следующие действия:

(75; 76; 78; 78);

(303; 0; 2; 2);

(302; 3; 1; 1);

(305; 2; 0; 0).

Ответ: а) да; б) нет; в) 305.

Еще одна задача, про числа на круге, была предложена на Дальнем Востоке и в других регионах России. Обратите внимание, что сюжеты задач разные, но во всех так или иначе используются понятия: делимость, четность, деление с остатком.

3. ЕГЭ-2022, Дальний Восток

По кругу расставлены N чисел так, что сумма трех последовательных чисел не делится на 3, а сумма четырех последовательных делится на 3.

а) Может ли N быть равно 240?

б) Может ли N быть равно 219?

в) Найдите наибольшее N, если числа различны и каждое меньше 340.

а) Да, может N = 240.

Например, по кругу расположены 60 четверок вида 1,1,2,2 или 1,2,1,2.

Сумма чисел в каждой тройке не делится на 3, а в каждой четверке делится на 3.

Возможен и такой вариант:

И в том, и в другом случае мы не ставим подряд три единицы или три двойки.

б)

Посмотрим, какие вообще числа могут находиться на круге.

Пусть а, b, с и d – последовательные числа на круге, такие

что а + b + с — не делится на 3. Тогда а + в + с при делении на 3 дает остаток 1 или 2.

Получим совокупность

  , где n = 0, 1, 2, dots .

Сумма a + b + c + d делится на 3, тогда a + b + c + d = 3k, где k = 2, 3, dots

Получаем систему 

Если из уравнения (3) вычесть уравнение (1), то получим d = 3k-3n-1 – это означает, что при делении числа d на 3 получается остаток 2.

Если из уравнения (3) вычесть уравнение (2), то получим d = 3k-3n-2 – это означает, что при делении числа d на 3 получается остаток 1.

Значит, число d при делении на 3 дает остаток 1 или 2.

Так как d – любое число на круге, то все числа на круге при делении на 3 дают остаток 1 или 2, то есть на круге все числа вида 3m + 1 или 3m + 2.

Так как по условию любые три подряд идущие числа не делятся на 3, значит, числа вида 3m + 1 не стоят три подряд, а стоят через одно или через два.

Аналогично, числа вида 3m + 2 не стоят три подряд, а стоят через одно или через два.

Обозначим числа, дающие при делении на 3 остаток 1, как (1).

Числа, дающие при делении на 3 остаток 2, обозначим как (2).

Получим варианты:

Других вариантов нет, так как сумма чисел в четверке должна быть кратна трем. Это значит, что если в ней 2 числа типа (1), то должно быть и 2 числа типа (2).

Предположим, что N = 129.

129 = 128 + 1 = 32 cdot 4+1 то есть на круге 32 четверки чисел и еще одно число, причем это может быть либо число типа (1), либо число типа (2). Где же оно может быть расположено?

А вот нигде не может!

Рассмотрим сначала первый вариант. Пусть наше число типа (1). Чтобы три числа типа (1) не стояли подряд, мы можем поставить его только между двумя числами типа (2). Но теперь вместе с тремя соседями слева или с тремя соседями справа оно дает четверку, в которой сумма не делится на 3.

Аналогично – если мы попытаемся добавить число типа (2).

Так же и во втором варианте. Куда бы мы ни добавили новое число, вместе с тремя соседями слева или с тремя соседями справа оно дает четверку, в которой сумма не делится на 3. Значит, 129 чисел на круге быть не может.

в) Найдем наибольшее количество чисел на круге при условии, что все они различны и не превосходят 340. Мы сказали, что это должны быть числа, которые при делении на 3 дают остаток 1 или остаток 2. В пункте (б) мы определили, как они должны быть расположены на круге.

Мы сказали также, что если N – количество чисел на круге, то N делится на 4.

Пусть n = 4р, то есть на круге р четверок чисел, в каждой из которых 2 числа типа (1) и 2 числа типа (2). Числа типа (1), которые при делении на 3 дают остаток 1, — это 1, 4, 7, 10 …

Числа типа (2), которые при делении на 3 дают остаток 2, — это 2, 5, 8, 11 …

Наибольшее число на круге – это число типа (2), и по условию, оно меньше 340. Числа типа (2) образуют арифметическую прогрессию

a_k=2+3left(k-1right).

Так как a_k textless 340, получим: 2 + 3 (k-1) textless 340 , отсюда k leq 113.

Значит, на круге не более 113 чисел типа (2). Но тогда и чисел типа (1) столько же, то есть тоже не более 113. Всего на круге не более 113 + 113 = 226 чисел. Это оценка.

Приведем пример для 226 различных чисел на круге.

Ответ: а) да; б) нет; в) 226.

И еще одна задача из Санкт-Петербурга.

4. ЕГЭ-2022, Санкт-Петербург

На доске написано N различных натуральных чисел, каждое из которых не превосходит 27. Для каждых двух написанных чисел a и b таких, что а < b ни одно из написанных чисел не делится на b – а и ни одно из написанных чисел не является делителем числа b – a.

а) Могли ли на доске быть написаны какие-то два числа из чисел 4, 5, 6?

б) Среди написанных на доске чисел есть 5. Может ли N быть равным 7?

в) Найдите наибольшее значение N.

а) Нет, не может. Если на доске числа 4 и 5, то их разность равна 1. Но 5 делится на 1 – противоречие.

Аналогично, если на доске числа 5 и 6.

Если на доске числа 4 и 6, то их разность равна 2, но 4 делится на 2 – противоречие.

б) Если два числа дают одинаковые остатки при делении на число р, то их разность делится на р.

Остатки от деления на 5 – это 1, 2 … 4, всего 4 остатка. Поскольку на доске 7 чисел, среди них найдутся два, дающие одинаковые остатки от деления на 5. Их разность делится на 5, что противоречит условию.

в) Из пункта (а) мы получили, что среди чисел на доске не может быть подряд идущих (например, 4 и 5 не могут быть на доске).

Если на доске только нечетные числа, разность любых двух из них четна, и ни одно из них не делится на эту разность.

От 1 до 27 ровно 14 нечетных чисел.

Есть еще одно условие: разность любых двух из них не должна делиться ни на одно из этих чисел.

Пусть на доске не менее 14 нечетных чисел. Если на доске есть число а ≤ 9, то хотя бы два из написанных чисел дают одинаковый остаток при делении на а, следовательно, их разность делится на а – противоречие.

Аналогично, если на доске не менее 10 чисел.

Поскольку все числа не превосходят 27, среди этих 10 чисел должно быть число а ≤ 9.

Но тогда не менее двух чисел на доске дают одинаковые остатки от деления на а, значит, их разность делится на а – противоречие. Значит, на доске не более 9 чисел. Это оценка.

Приведем пример для 9 чисел на доске.

11, 13, 15, 17, 19, 21, 23, 25, 27.

Разность любых двух из них четна и не делится ни на одно из этих чисел. Также ни одно из чисел не делится на разность каких-либо двух из них.

Ответ: а) нет, не может; б) нет, не может; в) 9.

Подробно о том, как решать задачи на числа и их свойства, читайте здесь. Это целый раздел сайта, посвященный нестандартным задачам.

А если хотите сами так же легко их решать – приходите на мой онлайн-курс и я вас научу.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задача 18 на числа и их свойства на ЕГЭ-2022 по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.03.2023

Задание №19 ЕГЭ по математике базового уровня


Свойства чисел


Задание №19 ЕГЭ по математике весьма необычно. Для его решения необходимо применить знания в области теории чисел. Тем не менее, задание является весьма решаемым, однако для школьников с оценкой хорошо и ниже я рекомендовал бы оставить это задание на последнюю очередь. Перейдем к рассмотрению типового варианта.


Разбор типовых вариантов заданий №19 ЕГЭ по математике базового уровня


Вариант 19МБ1

Найдите трехзначное число, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9. В ответе укажите какое-нибудь оно такое число.

Алгоритм выполнения:

  1. Ввести условные обозначения.
  2. Записать условия с помощью условных обозначений.
  3. Преобразовать полученные выражения.
  4. Логически рассуждая перебрать все возможные варианты, проверить их соответствие условиям.

Решение:

Обозначим первую цифру числа x, а вторую – y. Тогда третье число с учетом суммы цифр равной 20 будет равно 20 – (x + y). (x + y) обязательно меньше 10, иначе сумма равная 20 не получится.

По условию сумма квадратов цифр делится на 3, но не делится на 9. Запишем сумму квадратов цифр:

x 2 + y2 + (20 – (x + y))2

Преобразуем полученное выражение. Преобразуем квадрат разности с учетом формулы приведения.

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(20 – (x + y))2 = 400 -40(x + y) + (x + y)2

Подставим получившееся выражение в начальное, получим:

x 2 + y2 + (20 – (x + y))2 = x 2 + y2 + 400 — 40(x + y) + (x + y)2

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + y)2= x2 + 2xy + y2

Подставим:

x 2 + y2 + (20 – (x + y))2 = x 2 + y2 + 400 — 40(x + y) + (x + y)2 = x 2 + y2 + 400 — 40(x + y) + x2 + 2xy + y2

Приведем подобные слагаемые(сложим x2 с x2 и y2 с y2), получим:

x 2 + y2 + 400 — 40(x + y) + x2 + 2xy + y2 = 2x 2 + 2y2 + 2 · 200 — 2 · 20(x + y) + 2xy

Вынесем множитель 2 за скобку:

2x 2 + 2y2 + 2 · 200 — 2 · 20(x + y) + 2xy = 2(x 2 + y2 + 200 — 20(x + y) + xy)

Для удобства объединим 200 и 20(x + y) и вынесем 20 за скобку, получим:

2(x 2 + y2 + 20(10 — (x + y)) + xy)

Множитель 2 – четный, поэтому он никак не влияет на делимость на 3 или 9. Можем его не брать в расчет и рассматривать выражение:

x 2 + y2 + 20(10 — (x + y)) + xy

Предположим, что и x, и y делятся на 3. Тогда x 2 + y2 + xy делится на 3, а 20(10 — (x + y)) – не делится. Следовательно, и вся сумма x 2 + y2 + 20(10 — (x + y)) + xy на 3 не делится.

Предположим, что на 3 делится только одна цифра. Тогда, учитывая, что (x + y) обязательно меньше 10, иначе сумма равная 20 не получится, подберем возможные пары.

(3;8), (6;5), (6;7), (6;8), (9;2), (9;4), (9;5), (9;7), (9;8).

Методом подстановки проверим, соответствуют эти пары условию.

x 2 + y2 + 20(10 — (x + y)) + xy = 3 2 + 82 + 20(10 — (3 + 8)) + 3 · 8 = 9 + 64 – 20 + 24 = 77

x 2 + y2 + 20(10 — (x + y)) + xy = 6 2 + 52 + 20(10 — (6 + 5)) + 6 · 5 = 36 + 25 – 20 + 30 = 71

x 2 + y2 + 20(10 — (x + y)) + xy = 6 2 + 72 + 20(10 — (6 + 7)) + 6 · 7 = 36 + 49 – 60 + 42 = 67

x 2 + y2 + 20(10 — (x + y)) + xy = 6 2 + 82 + 20(10 — (6 + 8)) + 6 · 8 = 36 + 64 – 80 + 48 = 68

x 2 + y2 + 20(10 — (x + y)) + xy = 9 2 + 22 + 20(10 — (9 + 2)) + 9 · 2 = 81 + 4 – 20 + 18 = 83

x 2 + y2 + 20(10 — (x + y)) + xy = 9 2 + 42 + 20(10 — (9 + 4)) + 9 · 4 = 81 + 16 – 60 + 36 = 73

Ни одна из полученных сумм не удовлетворяет условию «сумма квадратов цифр делится на 3, но не делится на 9».

Следующие пары можно не проверять, так как они дают уже имеющиеся тройки цифр. Предположим, что ни одна из цифр числа не делится на 3. Возможные пары:

(4;7), (5;7), (5;8), (7;8).

Проверим:

x 2 + y2 + 20(10 — (x + y)) + xy = 4 2 + 72 + 20(10 — (4 + 7)) + 4 · 7 = 16 + 49 – 20 + 28 = 73

x 2 + y2 + 20(10 — (x + y)) + xy = 5 2 + 72 + 20(10 — (5 + 7)) + 5 · 7 = 25 + 49 – 40 + 35 = 69

Сумма 69 удовлетворяет условию «сумма квадратов цифр делится на 3, но не делится на 9». Следовательно, подходят цифры 5,7,8 в любом порядке.

Ответ: 578


Вариант 19МБ2

На 6 карточках написаны цифры 1; 2; 3; 6; 9; 9 (по одной цифре на каждой карточке). В выражении □ + □□ + □□□ вместо каждого квадратика положили карточку из набора. Оказалось, что полученная сумма делится на 10. Найдите эту сумму. В ответе укажите какое-нибудь одно такое число.

Алгоритм выполнения:

  1. Вспомнить признак делимости на 10.
  2. Разместить последние цифры каждого слагаемого таким образом, чтобы в сумме получилось 10.
  3. Расположить оставшиеся карточки в произвольном порядке.

Решение:

1. Если сумма делится на 10 нацело, то последняя цифра должна быть 0, остальные цифры значения не имеют.

2. В первый квадрат поместим цифру 1, в следующем числе на последнем месте – цифру 3 (или 6), а в третьем – цифру 6 (или 3), получим (сумма 1+3+6=10):

image001

3. Остальные цифры заполним произвольно, например, так:

image002

и получится сумма

1+23+996 = 1020.

Ответ: 1020


Вариант 19МБ3

На 6 карточках написаны цифры 1; 2; 2; 3; 5; 7 (по одной цифре на каждой карточке). В выражении □ + □□ + □□□ вместо каждого квадратика положили карточку из набора. Оказалось, что полученная сумма делится на 20. Найдите эту сумму. В ответе укажите какое-нибудь одно такое число.

Алгоритм выполнения:

  1. Вспомнить признак делимости на 10 и сформулировать признак делимости на 20.
  2. Разместить последние цифры каждого слагаемого таким образом, чтобы в сумме получилось 10.
  3. Разместить предпоследние цифры каждого слагаемого таким образом, чтобы в сумме получилось четное число в результате с учетом суммы первых цифр.
  4. Расположить оставшиеся карточки в произвольном порядке.

Решение:

1. Чтобы сумма делилась на 20, она должна заканчиваться на 0 и вторая цифра с конца должна быть четной (делиться на 2). Чтобы в конце суммы получить 0, первые три карточки следует выбрать так:

image001

2. Чтобы вторую цифру получить четной, можно взять карточки 2 и 7 (к ней будет добавляться еще 1 от первой суммы 10):

image002

3. В последнее место помещаем оставшуюся цифру 1, в результате имеем:

image003и сумма равна:

2+23+175=200.

Ответ: 200


Вариант 19МБ4

Найдите четырехзначное число, кратное 15, произведение цифр которого больше 0, но меньше 25. В ответе укажите какое-нибудь одно такое число.

Алгоритм выполнения

  1. Если произведение >0, то, значит, оно не равно нулю. Следовательно, ни один из множителей не может быть равным 0.
  2. Если произведение кратно 15, следовательно, оно кратно 5 и кратно 3.
  3. Если произведение кратно 5, то результат его должен оканчиваться 0 или 5. В данном случае берем 5, т.к. 0 не может быть одним из множителей (см.п.1).
  4. Итак, последняя цифра числа равна 5. Тогда произведение первых трех равно 25:5=5. Это означает, что нужно подобать 3 цифры так, чтобы их произведение было менее 5.
  5. Из всех полученных наборов цифр выбираем такой, чтобы сумма этих цифр плюс 5 (последняя, 4-я цифра) была кратной 3.

Решение:

Поскольку по условию произведение всех цифр кратно 15, то оно кратно 5 и 3.

Кратность 5 означает, что последней цифрой числа может быть только 0 или 5. Но 0 в виде последней цифры означал бы, что произведение всех 4-х цифр стало бы равным 0; а это противоречит условию. Тогда последняя цифра искомого числа равна 5.

Тогда получим: x·y·z·5<25 → x·y·z<5, где x, y, z – соответственно, 1-я, 2-я и 3-я цифры искомого числа.

Меньше 5 произведение таких цифр: 1 1 1, 1 1 3, 1 1 2, 1 2 2.

Согласно признаку делимости на 3, выбираем из этих наборов такой, чтобы сумма его цифр плюс 5 делилась на 3:

1+1+1+5=8 – не подходит;

1+1+3+5=10 – не подходит;

1+2+2+5=10 – не подходит

1+1+2+5=9 – подходит.

Тогда условию задачи соответствуют числа: 1125, 1215, 2115.

Ответ: 1125, 1215, 2115


Вариант 19МБ5

Вычеркните в числе 85417627 три цифры так, чтобы получившееся число делилось на 18. В ответе укажите какое-нибудь одно получившееся число.

Алгоритм выполнения

  1. Число делится на 18, если оно кратно 2 и 9.
  2. Кратность 2 означает, что число должно быть четным. Поэтому сразу отбрасывают последнюю – нечетную – цифру 7.
  3. Кратность 9 означает, что сумма его цифр делится на 9. Значит, находим сумму оставшихся цифр. Далее определяем подходящее для полученной суммы число, кратное 9. Число должно быть таким, чтобы: а) оно было меньшим суммы цифр; б) разница между этой суммой и найденным числом позволяла выделить в числе 2 цифры, сумма которых была бы равной этой разнице. Вычеркиваем эти цифры.

Решение:

Т.к. по условию число кратно 18, то оно кратно 2 и кратно 9.

Поскольку число кратно 2, то оно должно оканчиваться четной цифрой. 7 – нечетная цифра, поэтому вычеркиваем ее. Осталось: 8541762.

Т.к. полученное число кратно 9, то сумма его цифр должна делиться на 9. Находим общую сумму его цифр: 8+5+4+1+7+6+2=33. Ближайшее число, которое делится на 9, – это 27.

33–27=6 – это сумма двух цифр, которые нужно вычеркнуть. Пары цифр, которые при этом в сумме дают 6, – это 5 и 1 или 4 и 2. Вычеркнув их, получаем соответственно: 84762 или 85176.

Кроме этого, на 9 делится 18. Тогда 33–18=15. В этом случае вычеркнуть придется 8 и 7. Получаем: 54162.

На 9 делится еще и 9, однако 33–9=24, а пары цифр, которые дали бы в сумме 24, естественно, не существует.

Ответ: 84762, 85176, 54162


Вариант 19МБ6

На шести карточках написаны цифры 3; 6; 7; 7; 8; 9 (по одной цифре на каждой карточке). В выражении https://pp.userapi.com/c850232/v850232080/bdd08/2s_MgQ3Q64U.jpg

Вместо каждого квадратика положили карточку из данного набора. Оказалось, что полученная сумма делится на 10, но не делится на 20.

В ответе укажите какую-нибудь одну такую сумму.

Алгоритм выполнения

  1. Во 2-м предложении текста задачи фактически представлено условие, при котором сумма делится на 10, однако не делится на 2.
  2. Из п.1 следует, что результирующее число должно оканчиваться 0, а предпоследняя его цифра должна быть нечетной.

Решение:

Для удобства восприятия разместим карточки в столбик:

C:UsersКсеньяDesktop111мое3_1.jpg

Если число делится на 10, но не делится на 20, значит, оно точно не делится на 2 без последнего нуля.

Поскольку число кратно 10, то оно должно оканчиваться нулем. Поэтому в последнем разряде (единиц) нужно расположить 3 карточки с такими цифрами, чтоб их сумма оканчивалась на 0. Подходят здесь карточки: 1) 6, 7, 7; 2) 3, 8, 9. Их суммы равны 20. Соответственно, 0 мы пишем под чертой, а 2 переносим на предыдущий разряд (десятков):

C:UsersКсеньяDesktop111мое3_1_2.jpgC:UsersКсеньяDesktop111мое3_2_2.jpg

Чтобы число не делилось на 20, необходимо, чтобы перед нулем стояла нечетная цифра. Нечетная сумма здесь получится тогда, когда одно из слагаемых будет нечетным, а два других четными. Одно из этих (других) слагаемых – это перенесенная 2. Поэтому из оставшихся цифр следует взять: 1) 3 и 8; 2) 6 и 7. Получаем:

C:UsersКсеньяDesktop111мое3_1_3.jpgC:UsersКсеньяDesktop111мое3_2_3.jpg

На место сотен ставим последнюю (оставшуюся) карточку с цифрой: 1) 9; 2) 7. Получаем, соответственно, числа 1030 и 850:

C:UsersКсеньяDesktop111мое3_1_4.jpgC:UsersКсеньяDesktop111мое3_2_4.jpg

Ответ: 1030,850


Вариант 19МБ7

Найдите четное трехзначное натуральное число, сумма цифр которого на 1 меньше их произведения. В ответе укажите какое-нибудь одно такое число.

Алгоритм выполнения

  1. Вводим буквенные обозначения для цифр искомого числа. Исходя из условия задачи, составляем уравнение.
  2. Выражаем одну из цифр через 2 другие.
  3. Подбираем для этих 2-х (других) цифр значения так, чтобы 3-я (выраженная) представляло бы собой натуральное число. Вычисляем 3-ю цифру.
  4. Формируем искомое число так, чтобы оно было четным.

Решение:

Пусть цифры искомого числа – x, y, z. Тогда получаем:

xyz–(x+y+z)=1

xyz–x–y–z=1

zxy–z=x+y+1

z(xy–1)=x+y+1

z=(x+y+1)/(xy–1)

Знаменатель в этом выражении должен быть целым и положительным. Для простоты (а также для гарантии правильных расчетов) примем, что он должен быть равен 1. Тогда имеем: ху–1=1 → ху=2. Поскольку х и у это цифры, то их значения могут быть равными только 1 и 2 (т.к. только произведение этих однозначных натур.чисел дает в результате 2).

Отсюда z составляет: z=(1+2+1)/(1·2–1)=4/1=4.

Итак, имеем цифры: 1, 2, 4.

Т.к. по условию итоговое число должно быть четным, то оканчиваться оно может только 2 или 4. Тогда правильными вариантами чисел будут такие:

124, 142, 214, 412.

Ответ: 124, 142, 214, 412


Вариант 19МБ8

Найдите шестизначное число, которое записывается только цифрами 2 и 0 и делится на 24. В ответе укажите какое-нибудь одно такое число.

Алгоритм выполнения

  1. Если число делится на 24, значит, оно делится на 8 и на 3.
  2. Согласно признаку делимости на 8, 3 последних цифры его должны образовывать число, которое кратно 8.
  3. Чтобы число делилось на 3, необходимо, чтобы сумма его цифр делилась на 3. Учитывая уже сформированную 2-ю часть числа (см.п.2), дополняем его первыми тремя цифрами соответственно.

Решение:

Чтобы искомое число было кратно 24, требуется, чтобы оно делилось на 8 и в то же время на 3.

Число делится на 8, если последние его 3 цифры образуют число, кратное 8. С использованием только двоек и нулей такое трехзначное число можно образовать так: 000, 002, 020, 022, 200, 202, 220, 222. Из этих чисел на 8 делится только 000 и 200.

Теперь нужно дополнить искомое число первыми 3-мя цифрами так, чтобы оно делилось еще и на 3.

В 1-м случае это будет единственный вариант: 222000.

Во 2-м случае вариантов два: 220200, 202200.

Ответ: 222000, 220200, 202200


Вариант 19МБ9

Найдите четырехзначное число, кратное 15, произведение цифр которого больше 35, но меньше 45. В ответе укажите какое-нибудь одно такое число.

Алгоритм выполнения

  1. Если число кратно 15, значит, оно кратно 3 и 5.
  2. Применяем признак делимости на 5 и условие задачи, согласно которому произведение цифр числа ≠0. Так получаем, что последняя цифра искомого числа – только 5.
  3. Делим 35 на 5 и 45 на 5. Узнаем диапазон значений, которые может принимать произведение первых 3-х цифр числа. Узнаем, что оно может быть равно только 8.
  4. Определяем последовательности цифр, которые дают при перемножении 8.
  5. Проверяем полученные из найденных цифр числа на кратность трем.

Решение:

Кратность искомого числа 15 дает 2 условия: оно должно делиться на 5 и на 3.

Если число кратно 5, то оно должно оканчиваться цифрой 5 или 0. Однако 0 в данном случае использовать нельзя, поскольку при этом произведение цифр числа оказывается равным 0. По условию же это не так. Итак, последняя – 4-я – цифра числа равна 5.

По условию 35 < x·5 < 45, где х – произведение первых 3-х цифр числа. Тогда имеем: 7 < x < 9. Это неравенство верно только при х=8. Следовательно, для первых 3-х цифр должны выполняться равенства:

1·1·8=8, 1·2·4=8.

Отсюда получаем числа:

1185; 1245.

Проверяем их на кратность 3:

1+1+8+5=15;

1+2+4+5=12.

Вывод: оба найденные числа кратны 3. Плюс кратны их комбинации:

1815; 8115; 1425; 2145; 2415; 4125; 4215.

Ответ: 1815; 8115; 1425; 2145; 2415; 4125; 4215


Вариант 19МБ10

Найдите пятизначные число, кратное 25, любые две соседние цифры которого отличаются на 2. В ответе укажите какое-нибудь одно такое число.

Алгоритм выполнения

  1. Принимаем во внимание, что на 25 делятся числа, которые придется последовательно делить на 5 дважды. Определяем, какой парой цифр они должны оканчиваться.
  2. Учитывая, что 2-й частью условия является различие каждой соседней пары цифр исключительно на 2 единицы, выбираем подходящий вариант (или варианты) цифр.
  3. Способом подбора находим остальные цифры и, соответственно, числа. Одно из них запишем в ответе.

Решение:

Если число делится на 25, то оно должно оканчиваться на: 00, 25, 50, 75. Т.к. соседние цифры должны отличаться строго на 2, то использовать для 4-й и 5-й цифр можем только 75. Получаем: ***75.

Далее ищем 3-ю цифру:

  1. **975 или
  2. **575.

Дальше получаем по аналогии:

1) *7975 → 97975 или 57975;

2) *3575 → 13575 или 53575, *7575 → 57575 или 97575.

Ответ: 97975, 57975, 13575, 53575, 57575, 97575


Вариант 19МБ11

Найдите трехзначное натуральное число, большее 600, которое при делении на 3, на 4 и на 5 дает в остатке 1 и цифры которого расположены в порядке убывания слева направо. В ответе укажите какое-нибудь такое число.

Алгоритм выполнения

  1. Определяем диапазон значений для 1-й цифры числа (сотен).
  2. Определяем, какой может быть последняя цифра (единицы), приняв во внимание: 1) при делении на 5 дает в остатке 1; 2) на этом месте не может быть четная цифра, поскольку это одно из условий делимости на 4.
  3. Способом подбора определяем набор чисел, которые при делении на 3 дают в остатке 1.
  4. Из этого набора (см.п.3) отбрасываем числа, которые при делении на 4 дают остаток, отличный от 1.

Решение:

Т.к. искомое число >600 и при этом является трехзначным, то 1-й цифрой может быть только 6, 7, 8 или 9. Тогда получаем для искомого числа:

6***

7***

8***

9***

Если число при делении на 5 должно давать в остатке 1, значит, оно может оканчиваться только на 0+1=1 или на 5+1=6. Шестерку тут отбрасываем, поскольку в этом случае число четное и потенциально может делиться на 4. Поэтому имеем:

6**1

7**1

8**1

9**1

Если число при делении на 3 дает в остатке 1, значит, сумма его цифр должна быть кратной 3 плюс 1. Кроме того, учитываем, что цифры должны располагаться в числе в порядке убывания. Подбираем такие числа:

631

721

751

841

871

931

961

Из этой последовательности отбрасываем числа, для которых не выполняется условие о том, что число при делении на 4 должно давать в остатке 1.

Т.к. признак делимости на 4 заключается в том, что 2 последние цифры должны делиться на 4, то получаем:

для 631: 31=28+3, т.е. в остатке имеем 3; число не подходит

для 721: 21=20+1, т.е. в остатке – 1; число подходит

для 751: 51=48+3, т.е. в остатке – 3; число не подходит

для 841: 41=40+1, т.е. в остатке – 1; число подходит

для 871: 71=68+3, т.е. в остатке – 3; число не подходит

для 931: 31=28+3, т.е. в остатке – 3; число не подходит

для 961: 61=60+1, т.е. в остатке – 1; число подходит

Ответ:  721, 841, 961


Вариант 19МБ12

Найдите трехзначное натуральное число, большее 400, но меньшее 650, которое делится на каждую свою цифру и все цифры которого различны и не равны 0. В ответе укажите какое-нибудь одно такое число.

Алгоритм выполнения

  1. Из условия следует, что числа могут начинаться только на 4,5 или 6.
  2. При анализе чисел 4-й сотни отбрасываем числа: 1) 1-го десятка, т.к. в них содержится 0; 2) 4-го десятка, т.к. в этом случае первые две цифры совпадут; 3) числа 5-го десятка, т.к. они должны оканчиваться только на 5 или 0, что недопустимо. Кроме того, для всех четных десятков можно рассматривать только четные числа.
  3. Числа 5-й сотни отбрасываем полностью, т.к. чтобы делиться на каждую свою цифру, они должны оканчиваться 5 или 0.
  4. Для чисел 6-й сотни рассматривать можно только: 1) четные; 2) кратные 3; 3) не оканчивающиеся 0.

Решение:

Числа 40* и 4*0 отбрасываем, т.к. они содержат 0.

Числа 41* годятся только четные, т.к. это обязательное условия для кратности 4. Анализируем:

412 – подходит

414 – не подходит, т.к. в нем совпадают цифры

416 – не подходит, т.к. не делится на 6

418 – не подходит, т.к. не делится ни на 4, ни на 8

Из чисел 42* годятся только четные, поскольку должны делиться на 2:

422 и 424 – не подходят, т.к. в них совпадают цифры

426 – не подходит, т.к. не делится на 4

428 – не подходит, т.к. не делится на 8

Числа 43* годятся только четные и кратные 3. Поэтому тут подходит только 432.

Числа 44* не подходят полностью.

Числа 45* не подходят полностью, т.к. они должны оканчиваться только 5 (т.е. быть нечетными) или 0.

Числа 46*, 47*, 48*, 49* не подходят полностью, т.к. для каждого из них не выполняется 1 или несколько условий.

Числа 5-й сотни не годятся полностью. Они должны делиться на 5, а для этого оканчиваться либо 5, либо 0, что не допускается.

Числа 60* не годятся полностью.

Среди остальных можно рассматривать только четные, кратные 3, не оканчивающиеся 0. Опуская подробности перебора чисел, оговорим только, что из них годятся: 612, 624, 648. Для остальных не выполняется одно или несколько условий.

Ответ: 412, 432, 612, 624, 648


Вариант 19МБ13

Найдите четырехзначное число, кратное 45, все цифры которого различны и четны. В ответе укажите какое-нибудь одно такое число.

Алгоритм выполнения

  1. Если число кратно 45, значит, оно делится на 5 и на 9.
  2. Рассматривать следует только числа четных сотен.
  3. Оканчиваться числа могут только 0, т.к. 5 – нечетная цифра.
  4. Сумма цифр числа должна быть равна 18. Только в этом случае можно составить его из всех четных цифр.

Решение:

Т.к. по условию цифры должны быть четными, то рассматривать можно только числа 2-й, 4-й, 6-й и 8-й тысяч. Это значит, что начинаться оно может с 2, 4, 6 или 8.

Если число кратно 45, то оно кратно 5 и кратно 9.

Если число кратно 5, то оно должно оканчиваться 5 или 0. Но поскольку все цифры должны быть четными, то подходит здесь только 0.

Т.о., получаем шаблоны чисел: 2**0, 4**0, 6**0, 8**0. Отсюда следует, что для проверки кратности 9 требуется, чтобы сумма первых 3-х цифр была равной 9, или 18, или 27 и т.д. Но подходит тут только 18. Основания: 1) для получения в сумме 9 нужно, чтобы одно из слагаемых было нечетным, а это противоречит условию; 2) 27 не подходит потому, что даже если взять самую большую 1-ю цифру 8, то сумма 2-й и 3-й цифр будет равна 27–8=19, что превышает допустимый предел. Еще большие суммы цифр, кратные 9, не подходят тем более.

Рассматриваем числа по тысячам.

Числа 2**0. Сумма средних цифр равна: 18–2=16. Получить 16 из четных чисел можно только так: 8+8. Однако цифры не должны повторяться. Поэтому подходящих условию чисел здесь нет.

Числа 4**0. Сумма средних цифр: 18–4=14. 14=8+6. Поэтому получаем: 4680 или 4860.

Числа 6**0. Сумма средних цифр: 18–6=12. 12=6+6, что не подходит, т.к. цифры повторяются. 12=4+8. Получаем: 6480 или 6840.

Числа 8**0. Сумма средних цифр: 18–8=10. 10=2+8, что не подходит, т.к. при этом будет повторяться 8. 10=4+6. Получаем: 8460 или 8640.

Ответ: 4680, 4860, 6480, 6840, 8460, 8640

Практика по заданию №19 ЕГЭ по математике базового уровня — цифровая запись числа.

Для выполнения задания №18 необходимо уметь выполнять вычисления и преобразования .

Практика

Коды проверяемых элементов содержания (по кодификатору) — 1.4.1, 1.4.2

Уровень сложности задания — базовый

Максимальный балл за выполнение задания — 1

Примерное время выполнения задания выпускником, изучавшим математику на базовом уровне (в мин.) — 15

Примеры заданий:

1. Вычеркните в числе 141565041 три цифры так, чтобы получившееся число делилось на 30. В ответе укажите какое-нибудь одно получившееся число.

2. Вычеркните в числе 23462141 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно получившееся число.

3. Вычеркните в числе 45278351 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите какое-нибудь одно получившееся число

4. Четырёхзначное число A состоит из цифр 3, 4, 8, 9, а четырёхзначное число B – из цифр 6, 7, 8, 9. Известно, что B= 2A . Найдите число A. В ответе укажите какое-нибудь одно такое число, большее 3500.

5. Четырёхзначное число A состоит из цифр 1, 4, 6, 9, а четырёхзначное число B – из цифр 2, 3, 8, 9. Известно, что B=2A. Найдите число A. В ответе укажите какое-нибудь одно такое число, большее 1500.

6. Найдите трёхзначное натуральное число, большее 400, которое при делении и на 6, и на 5 даёт равные ненулевые остатки и первая цифра в записи которого является средним арифметическим двух других цифр. В ответе укажите какое-нибудь одно такое число

7. Найдите трёхзначное число A, обладающее двумя свойствами: • сумма цифр числа A делится на 11; • сумма цифр числа A+7 делится на 11. В ответе укажите какое-нибудь одно такое число.

8. Среднее арифметическое девяти различных натуральных чисел равно 19. Среднее арифметическое этих чисел и десятого числа равно 20. Чему равно десятое число?*

Связанные страницы:

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Как найти точки экстремума егэ
  • Как найти тему для сочинения егэ
  • Как найти тангенс угла егэ профиль
  • Как найти тангенс острого угла по клеточкам егэ
  • Как найти счастливый билет на экзамене

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии